
If the given vectors \[(-bc,{{b}^{2}}+bc,{{c}^{2}}+bc)\], \[({{a}^{2}}+ac,-ac,{{c}^{2}}+ac)\], and \[({{a}^{2}}+ab,{{b}^{2}}+ab,-ab)\] are coplanar, where none of $a$, $b$, and $c$ is zero, then
A. \[({{a}^{2}}+{{b}^{2}}+{{c}^{2}})=1\]
B. \[(bc+ca+ab)=0\]
C. \[(a+b+c)=0\]
D. \[({{a}^{2}}+{{b}^{2}}+{{c}^{2}})=(bc+ca+ab)\]
Answer
217.5k+ views
Hint: In the above question, we need to find the condition that holds true if we solve the three given coplanar vectors. In order to find which condition holds true on solving the given vectors we should know the concept of coplanarity, and the matrix method of determination of determinants of vectors.
Formula used: Scalar triple product of three vectors:
We have the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as
\[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}+{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}+{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}+{{c}_{3}}\overrightarrow{k} \\
\end{align}\]
Then, the triple product is calculated by,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
Thus, the volume of a 3D structure is calculated by $V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]$
Complete step by step solution: Here, we are given the three vectors which are coplanar
\[\begin{align}
& (-bc,{{b}^{2}}+bc,{{c}^{2}}+bc) \\
& ({{a}^{2}}+ac,-ac,{{c}^{2}}+ac) \\
& ({{a}^{2}}+ab,{{b}^{2}}+ab,-ab) \\
\end{align}\]
Then, by the scalar triple product of these vectors, we get
\[\begin{align}
& [\overrightarrow{A}\text{ }\overrightarrow{B}\text{ }\overrightarrow{C}]=\left| \begin{matrix}
-bc & {{b}^{2}}+bc & {{c}^{2}}+bc \\
{{a}^{2}}+ac & -ac & {{c}^{2}}+ac \\
{{a}^{2}}+ab & {{b}^{2}}+ab & -ab \\
\end{matrix} \right| \\
& =-bc\left[ (-ac\times -ab)-(({{c}^{2}}+ac)({{b}^{2}}+ab)) \right]- \\
& ({{b}^{2}}+bc)\left[ ({{a}^{2}}+ac)(-ab)-({{a}^{2}}+ab)({{c}^{2}}+ac) \right]+ \\
& ({{c}^{2}}+bc)\left[ ({{a}^{2}}+ac)({{b}^{2}}+ab)-({{a}^{2}}+ab)(-ac) \right] \\
& =-bc\left[ {{a}^{2}}bc-({{c}^{2}}{{b}^{2}}+ab{{c}^{2}}+a{{b}^{2}}c+{{a}^{2}}bc) \right]- \\
& ({{b}^{2}}+bc)\left[ (-{{a}^{3}}b-{{a}^{2}}bc)-({{a}^{2}}{{c}^{2}}+{{a}^{3}}c+ab{{c}^{2}}+{{a}^{2}}bc) \right]+ \\
& ({{c}^{2}}+bc)\left[ ({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+{{a}^{2}}bc)-(-{{a}^{3}}c-{{a}^{2}}bc) \right] \\
& =-bc({{a}^{2}}bc-{{c}^{2}}{{b}^{2}}-ab{{c}^{2}}-a{{b}^{2}}c-{{a}^{2}}bc)- \\
& ({{b}^{2}}+bc)(-{{a}^{3}}b-{{a}^{2}}bc-{{a}^{2}}{{c}^{2}}-{{a}^{3}}c-ab{{c}^{2}}-{{a}^{2}}bc)+ \\
& ({{c}^{2}}+bc)({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+{{a}^{2}}bc+{{a}^{3}}c+{{a}^{2}}bc) \\
\end{align}\]
\[\begin{align}
& =-bc(-{{c}^{2}}{{b}^{2}}-ab{{c}^{2}}-a{{b}^{2}}c)- \\
& ({{b}^{2}}+bc)(-{{a}^{3}}b-2{{a}^{2}}bc-{{a}^{2}}{{c}^{2}}-{{a}^{3}}c-ab{{c}^{2}})+ \\
& ({{c}^{2}}+bc)({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+2{{a}^{2}}bc+{{a}^{3}}c) \\
& =bc({{c}^{2}}{{b}^{2}}+ab{{c}^{2}}+a{{b}^{2}}c)+ \\
& ({{b}^{2}}+bc)({{a}^{3}}b+2{{a}^{2}}bc+{{a}^{2}}{{c}^{2}}+{{a}^{3}}c+ab{{c}^{2}})+ \\
& ({{c}^{2}}+bc)({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+2{{a}^{2}}bc+{{a}^{3}}c) \\
& ={{(ab+bc+ca)}^{3}} \\
\end{align}\]
Since the determinant of the coplanar matrix is equal to zero, we can write
$\begin{align}
& {{(ab+bc+ca)}^{3}}=0 \\
& (ab+bc+ca)=0 \\
\end{align}$
Thus, Option (B) is correct.
Additional Information: Important vector identities for solving vector equations are:
\[\overrightarrow{a}\times \overrightarrow{a}=0\]
\[[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{a}]=0\]
\[\begin{align}
& \overrightarrow{i}\cdot \overrightarrow{i}=\overrightarrow{j}\cdot \overrightarrow{j}=\overrightarrow{k}\cdot \overrightarrow{k}=1 \\
& \overrightarrow{i}\times \overrightarrow{j}=\overrightarrow{k} \\
& \overrightarrow{j}\times \overrightarrow{k}=\overrightarrow{i} \\
& \overrightarrow{k}\times \overrightarrow{i}=\overrightarrow{j} \\
\end{align}\]
Note: We can see from the above concept that the value of the determinant of the coefficient matrix is 0, which is calculated using the concept of coplanarity and the matrix method of determination of determinants of vectors.
Formula used: Scalar triple product of three vectors:
We have the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as
\[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}+{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}+{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}+{{c}_{3}}\overrightarrow{k} \\
\end{align}\]
Then, the triple product is calculated by,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
Thus, the volume of a 3D structure is calculated by $V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]$
Complete step by step solution: Here, we are given the three vectors which are coplanar
\[\begin{align}
& (-bc,{{b}^{2}}+bc,{{c}^{2}}+bc) \\
& ({{a}^{2}}+ac,-ac,{{c}^{2}}+ac) \\
& ({{a}^{2}}+ab,{{b}^{2}}+ab,-ab) \\
\end{align}\]
Then, by the scalar triple product of these vectors, we get
\[\begin{align}
& [\overrightarrow{A}\text{ }\overrightarrow{B}\text{ }\overrightarrow{C}]=\left| \begin{matrix}
-bc & {{b}^{2}}+bc & {{c}^{2}}+bc \\
{{a}^{2}}+ac & -ac & {{c}^{2}}+ac \\
{{a}^{2}}+ab & {{b}^{2}}+ab & -ab \\
\end{matrix} \right| \\
& =-bc\left[ (-ac\times -ab)-(({{c}^{2}}+ac)({{b}^{2}}+ab)) \right]- \\
& ({{b}^{2}}+bc)\left[ ({{a}^{2}}+ac)(-ab)-({{a}^{2}}+ab)({{c}^{2}}+ac) \right]+ \\
& ({{c}^{2}}+bc)\left[ ({{a}^{2}}+ac)({{b}^{2}}+ab)-({{a}^{2}}+ab)(-ac) \right] \\
& =-bc\left[ {{a}^{2}}bc-({{c}^{2}}{{b}^{2}}+ab{{c}^{2}}+a{{b}^{2}}c+{{a}^{2}}bc) \right]- \\
& ({{b}^{2}}+bc)\left[ (-{{a}^{3}}b-{{a}^{2}}bc)-({{a}^{2}}{{c}^{2}}+{{a}^{3}}c+ab{{c}^{2}}+{{a}^{2}}bc) \right]+ \\
& ({{c}^{2}}+bc)\left[ ({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+{{a}^{2}}bc)-(-{{a}^{3}}c-{{a}^{2}}bc) \right] \\
& =-bc({{a}^{2}}bc-{{c}^{2}}{{b}^{2}}-ab{{c}^{2}}-a{{b}^{2}}c-{{a}^{2}}bc)- \\
& ({{b}^{2}}+bc)(-{{a}^{3}}b-{{a}^{2}}bc-{{a}^{2}}{{c}^{2}}-{{a}^{3}}c-ab{{c}^{2}}-{{a}^{2}}bc)+ \\
& ({{c}^{2}}+bc)({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+{{a}^{2}}bc+{{a}^{3}}c+{{a}^{2}}bc) \\
\end{align}\]
\[\begin{align}
& =-bc(-{{c}^{2}}{{b}^{2}}-ab{{c}^{2}}-a{{b}^{2}}c)- \\
& ({{b}^{2}}+bc)(-{{a}^{3}}b-2{{a}^{2}}bc-{{a}^{2}}{{c}^{2}}-{{a}^{3}}c-ab{{c}^{2}})+ \\
& ({{c}^{2}}+bc)({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+2{{a}^{2}}bc+{{a}^{3}}c) \\
& =bc({{c}^{2}}{{b}^{2}}+ab{{c}^{2}}+a{{b}^{2}}c)+ \\
& ({{b}^{2}}+bc)({{a}^{3}}b+2{{a}^{2}}bc+{{a}^{2}}{{c}^{2}}+{{a}^{3}}c+ab{{c}^{2}})+ \\
& ({{c}^{2}}+bc)({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+2{{a}^{2}}bc+{{a}^{3}}c) \\
& ={{(ab+bc+ca)}^{3}} \\
\end{align}\]
Since the determinant of the coplanar matrix is equal to zero, we can write
$\begin{align}
& {{(ab+bc+ca)}^{3}}=0 \\
& (ab+bc+ca)=0 \\
\end{align}$
Thus, Option (B) is correct.
Additional Information: Important vector identities for solving vector equations are:
\[\overrightarrow{a}\times \overrightarrow{a}=0\]
\[[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{a}]=0\]
\[\begin{align}
& \overrightarrow{i}\cdot \overrightarrow{i}=\overrightarrow{j}\cdot \overrightarrow{j}=\overrightarrow{k}\cdot \overrightarrow{k}=1 \\
& \overrightarrow{i}\times \overrightarrow{j}=\overrightarrow{k} \\
& \overrightarrow{j}\times \overrightarrow{k}=\overrightarrow{i} \\
& \overrightarrow{k}\times \overrightarrow{i}=\overrightarrow{j} \\
\end{align}\]
Note: We can see from the above concept that the value of the determinant of the coefficient matrix is 0, which is calculated using the concept of coplanarity and the matrix method of determination of determinants of vectors.
Recently Updated Pages
Impulse Momentum Theorem Explained: Formula, Examples & Applications

Inertial and Non-Inertial Frames of Reference Explained

Ionisation Energy and Ionisation Potential Explained

Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Addition of Three Vectors: Methods & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

