
If the given vectors \[(-bc,{{b}^{2}}+bc,{{c}^{2}}+bc)\], \[({{a}^{2}}+ac,-ac,{{c}^{2}}+ac)\], and \[({{a}^{2}}+ab,{{b}^{2}}+ab,-ab)\] are coplanar, where none of $a$, $b$, and $c$ is zero, then
A. \[({{a}^{2}}+{{b}^{2}}+{{c}^{2}})=1\]
B. \[(bc+ca+ab)=0\]
C. \[(a+b+c)=0\]
D. \[({{a}^{2}}+{{b}^{2}}+{{c}^{2}})=(bc+ca+ab)\]
Answer
162k+ views
Hint: In the above question, we need to find the condition that holds true if we solve the three given coplanar vectors. In order to find which condition holds true on solving the given vectors we should know the concept of coplanarity, and the matrix method of determination of determinants of vectors.
Formula used: Scalar triple product of three vectors:
We have the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as
\[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}+{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}+{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}+{{c}_{3}}\overrightarrow{k} \\
\end{align}\]
Then, the triple product is calculated by,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
Thus, the volume of a 3D structure is calculated by $V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]$
Complete step by step solution: Here, we are given the three vectors which are coplanar
\[\begin{align}
& (-bc,{{b}^{2}}+bc,{{c}^{2}}+bc) \\
& ({{a}^{2}}+ac,-ac,{{c}^{2}}+ac) \\
& ({{a}^{2}}+ab,{{b}^{2}}+ab,-ab) \\
\end{align}\]
Then, by the scalar triple product of these vectors, we get
\[\begin{align}
& [\overrightarrow{A}\text{ }\overrightarrow{B}\text{ }\overrightarrow{C}]=\left| \begin{matrix}
-bc & {{b}^{2}}+bc & {{c}^{2}}+bc \\
{{a}^{2}}+ac & -ac & {{c}^{2}}+ac \\
{{a}^{2}}+ab & {{b}^{2}}+ab & -ab \\
\end{matrix} \right| \\
& =-bc\left[ (-ac\times -ab)-(({{c}^{2}}+ac)({{b}^{2}}+ab)) \right]- \\
& ({{b}^{2}}+bc)\left[ ({{a}^{2}}+ac)(-ab)-({{a}^{2}}+ab)({{c}^{2}}+ac) \right]+ \\
& ({{c}^{2}}+bc)\left[ ({{a}^{2}}+ac)({{b}^{2}}+ab)-({{a}^{2}}+ab)(-ac) \right] \\
& =-bc\left[ {{a}^{2}}bc-({{c}^{2}}{{b}^{2}}+ab{{c}^{2}}+a{{b}^{2}}c+{{a}^{2}}bc) \right]- \\
& ({{b}^{2}}+bc)\left[ (-{{a}^{3}}b-{{a}^{2}}bc)-({{a}^{2}}{{c}^{2}}+{{a}^{3}}c+ab{{c}^{2}}+{{a}^{2}}bc) \right]+ \\
& ({{c}^{2}}+bc)\left[ ({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+{{a}^{2}}bc)-(-{{a}^{3}}c-{{a}^{2}}bc) \right] \\
& =-bc({{a}^{2}}bc-{{c}^{2}}{{b}^{2}}-ab{{c}^{2}}-a{{b}^{2}}c-{{a}^{2}}bc)- \\
& ({{b}^{2}}+bc)(-{{a}^{3}}b-{{a}^{2}}bc-{{a}^{2}}{{c}^{2}}-{{a}^{3}}c-ab{{c}^{2}}-{{a}^{2}}bc)+ \\
& ({{c}^{2}}+bc)({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+{{a}^{2}}bc+{{a}^{3}}c+{{a}^{2}}bc) \\
\end{align}\]
\[\begin{align}
& =-bc(-{{c}^{2}}{{b}^{2}}-ab{{c}^{2}}-a{{b}^{2}}c)- \\
& ({{b}^{2}}+bc)(-{{a}^{3}}b-2{{a}^{2}}bc-{{a}^{2}}{{c}^{2}}-{{a}^{3}}c-ab{{c}^{2}})+ \\
& ({{c}^{2}}+bc)({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+2{{a}^{2}}bc+{{a}^{3}}c) \\
& =bc({{c}^{2}}{{b}^{2}}+ab{{c}^{2}}+a{{b}^{2}}c)+ \\
& ({{b}^{2}}+bc)({{a}^{3}}b+2{{a}^{2}}bc+{{a}^{2}}{{c}^{2}}+{{a}^{3}}c+ab{{c}^{2}})+ \\
& ({{c}^{2}}+bc)({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+2{{a}^{2}}bc+{{a}^{3}}c) \\
& ={{(ab+bc+ca)}^{3}} \\
\end{align}\]
Since the determinant of the coplanar matrix is equal to zero, we can write
$\begin{align}
& {{(ab+bc+ca)}^{3}}=0 \\
& (ab+bc+ca)=0 \\
\end{align}$
Thus, Option (B) is correct.
Additional Information: Important vector identities for solving vector equations are:
\[\overrightarrow{a}\times \overrightarrow{a}=0\]
\[[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{a}]=0\]
\[\begin{align}
& \overrightarrow{i}\cdot \overrightarrow{i}=\overrightarrow{j}\cdot \overrightarrow{j}=\overrightarrow{k}\cdot \overrightarrow{k}=1 \\
& \overrightarrow{i}\times \overrightarrow{j}=\overrightarrow{k} \\
& \overrightarrow{j}\times \overrightarrow{k}=\overrightarrow{i} \\
& \overrightarrow{k}\times \overrightarrow{i}=\overrightarrow{j} \\
\end{align}\]
Note: We can see from the above concept that the value of the determinant of the coefficient matrix is 0, which is calculated using the concept of coplanarity and the matrix method of determination of determinants of vectors.
Formula used: Scalar triple product of three vectors:
We have the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as
\[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}+{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}+{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}+{{c}_{3}}\overrightarrow{k} \\
\end{align}\]
Then, the triple product is calculated by,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
Thus, the volume of a 3D structure is calculated by $V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]$
Complete step by step solution: Here, we are given the three vectors which are coplanar
\[\begin{align}
& (-bc,{{b}^{2}}+bc,{{c}^{2}}+bc) \\
& ({{a}^{2}}+ac,-ac,{{c}^{2}}+ac) \\
& ({{a}^{2}}+ab,{{b}^{2}}+ab,-ab) \\
\end{align}\]
Then, by the scalar triple product of these vectors, we get
\[\begin{align}
& [\overrightarrow{A}\text{ }\overrightarrow{B}\text{ }\overrightarrow{C}]=\left| \begin{matrix}
-bc & {{b}^{2}}+bc & {{c}^{2}}+bc \\
{{a}^{2}}+ac & -ac & {{c}^{2}}+ac \\
{{a}^{2}}+ab & {{b}^{2}}+ab & -ab \\
\end{matrix} \right| \\
& =-bc\left[ (-ac\times -ab)-(({{c}^{2}}+ac)({{b}^{2}}+ab)) \right]- \\
& ({{b}^{2}}+bc)\left[ ({{a}^{2}}+ac)(-ab)-({{a}^{2}}+ab)({{c}^{2}}+ac) \right]+ \\
& ({{c}^{2}}+bc)\left[ ({{a}^{2}}+ac)({{b}^{2}}+ab)-({{a}^{2}}+ab)(-ac) \right] \\
& =-bc\left[ {{a}^{2}}bc-({{c}^{2}}{{b}^{2}}+ab{{c}^{2}}+a{{b}^{2}}c+{{a}^{2}}bc) \right]- \\
& ({{b}^{2}}+bc)\left[ (-{{a}^{3}}b-{{a}^{2}}bc)-({{a}^{2}}{{c}^{2}}+{{a}^{3}}c+ab{{c}^{2}}+{{a}^{2}}bc) \right]+ \\
& ({{c}^{2}}+bc)\left[ ({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+{{a}^{2}}bc)-(-{{a}^{3}}c-{{a}^{2}}bc) \right] \\
& =-bc({{a}^{2}}bc-{{c}^{2}}{{b}^{2}}-ab{{c}^{2}}-a{{b}^{2}}c-{{a}^{2}}bc)- \\
& ({{b}^{2}}+bc)(-{{a}^{3}}b-{{a}^{2}}bc-{{a}^{2}}{{c}^{2}}-{{a}^{3}}c-ab{{c}^{2}}-{{a}^{2}}bc)+ \\
& ({{c}^{2}}+bc)({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+{{a}^{2}}bc+{{a}^{3}}c+{{a}^{2}}bc) \\
\end{align}\]
\[\begin{align}
& =-bc(-{{c}^{2}}{{b}^{2}}-ab{{c}^{2}}-a{{b}^{2}}c)- \\
& ({{b}^{2}}+bc)(-{{a}^{3}}b-2{{a}^{2}}bc-{{a}^{2}}{{c}^{2}}-{{a}^{3}}c-ab{{c}^{2}})+ \\
& ({{c}^{2}}+bc)({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+2{{a}^{2}}bc+{{a}^{3}}c) \\
& =bc({{c}^{2}}{{b}^{2}}+ab{{c}^{2}}+a{{b}^{2}}c)+ \\
& ({{b}^{2}}+bc)({{a}^{3}}b+2{{a}^{2}}bc+{{a}^{2}}{{c}^{2}}+{{a}^{3}}c+ab{{c}^{2}})+ \\
& ({{c}^{2}}+bc)({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+2{{a}^{2}}bc+{{a}^{3}}c) \\
& ={{(ab+bc+ca)}^{3}} \\
\end{align}\]
Since the determinant of the coplanar matrix is equal to zero, we can write
$\begin{align}
& {{(ab+bc+ca)}^{3}}=0 \\
& (ab+bc+ca)=0 \\
\end{align}$
Thus, Option (B) is correct.
Additional Information: Important vector identities for solving vector equations are:
\[\overrightarrow{a}\times \overrightarrow{a}=0\]
\[[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{a}]=0\]
\[\begin{align}
& \overrightarrow{i}\cdot \overrightarrow{i}=\overrightarrow{j}\cdot \overrightarrow{j}=\overrightarrow{k}\cdot \overrightarrow{k}=1 \\
& \overrightarrow{i}\times \overrightarrow{j}=\overrightarrow{k} \\
& \overrightarrow{j}\times \overrightarrow{k}=\overrightarrow{i} \\
& \overrightarrow{k}\times \overrightarrow{i}=\overrightarrow{j} \\
\end{align}\]
Note: We can see from the above concept that the value of the determinant of the coefficient matrix is 0, which is calculated using the concept of coplanarity and the matrix method of determination of determinants of vectors.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
