
If the given vectors \[(-bc,{{b}^{2}}+bc,{{c}^{2}}+bc)\], \[({{a}^{2}}+ac,-ac,{{c}^{2}}+ac)\], and \[({{a}^{2}}+ab,{{b}^{2}}+ab,-ab)\] are coplanar, where none of $a$, $b$, and $c$ is zero, then
A. \[({{a}^{2}}+{{b}^{2}}+{{c}^{2}})=1\]
B. \[(bc+ca+ab)=0\]
C. \[(a+b+c)=0\]
D. \[({{a}^{2}}+{{b}^{2}}+{{c}^{2}})=(bc+ca+ab)\]
Answer
163.8k+ views
Hint: In the above question, we need to find the condition that holds true if we solve the three given coplanar vectors. In order to find which condition holds true on solving the given vectors we should know the concept of coplanarity, and the matrix method of determination of determinants of vectors.
Formula used: Scalar triple product of three vectors:
We have the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as
\[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}+{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}+{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}+{{c}_{3}}\overrightarrow{k} \\
\end{align}\]
Then, the triple product is calculated by,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
Thus, the volume of a 3D structure is calculated by $V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]$
Complete step by step solution: Here, we are given the three vectors which are coplanar
\[\begin{align}
& (-bc,{{b}^{2}}+bc,{{c}^{2}}+bc) \\
& ({{a}^{2}}+ac,-ac,{{c}^{2}}+ac) \\
& ({{a}^{2}}+ab,{{b}^{2}}+ab,-ab) \\
\end{align}\]
Then, by the scalar triple product of these vectors, we get
\[\begin{align}
& [\overrightarrow{A}\text{ }\overrightarrow{B}\text{ }\overrightarrow{C}]=\left| \begin{matrix}
-bc & {{b}^{2}}+bc & {{c}^{2}}+bc \\
{{a}^{2}}+ac & -ac & {{c}^{2}}+ac \\
{{a}^{2}}+ab & {{b}^{2}}+ab & -ab \\
\end{matrix} \right| \\
& =-bc\left[ (-ac\times -ab)-(({{c}^{2}}+ac)({{b}^{2}}+ab)) \right]- \\
& ({{b}^{2}}+bc)\left[ ({{a}^{2}}+ac)(-ab)-({{a}^{2}}+ab)({{c}^{2}}+ac) \right]+ \\
& ({{c}^{2}}+bc)\left[ ({{a}^{2}}+ac)({{b}^{2}}+ab)-({{a}^{2}}+ab)(-ac) \right] \\
& =-bc\left[ {{a}^{2}}bc-({{c}^{2}}{{b}^{2}}+ab{{c}^{2}}+a{{b}^{2}}c+{{a}^{2}}bc) \right]- \\
& ({{b}^{2}}+bc)\left[ (-{{a}^{3}}b-{{a}^{2}}bc)-({{a}^{2}}{{c}^{2}}+{{a}^{3}}c+ab{{c}^{2}}+{{a}^{2}}bc) \right]+ \\
& ({{c}^{2}}+bc)\left[ ({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+{{a}^{2}}bc)-(-{{a}^{3}}c-{{a}^{2}}bc) \right] \\
& =-bc({{a}^{2}}bc-{{c}^{2}}{{b}^{2}}-ab{{c}^{2}}-a{{b}^{2}}c-{{a}^{2}}bc)- \\
& ({{b}^{2}}+bc)(-{{a}^{3}}b-{{a}^{2}}bc-{{a}^{2}}{{c}^{2}}-{{a}^{3}}c-ab{{c}^{2}}-{{a}^{2}}bc)+ \\
& ({{c}^{2}}+bc)({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+{{a}^{2}}bc+{{a}^{3}}c+{{a}^{2}}bc) \\
\end{align}\]
\[\begin{align}
& =-bc(-{{c}^{2}}{{b}^{2}}-ab{{c}^{2}}-a{{b}^{2}}c)- \\
& ({{b}^{2}}+bc)(-{{a}^{3}}b-2{{a}^{2}}bc-{{a}^{2}}{{c}^{2}}-{{a}^{3}}c-ab{{c}^{2}})+ \\
& ({{c}^{2}}+bc)({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+2{{a}^{2}}bc+{{a}^{3}}c) \\
& =bc({{c}^{2}}{{b}^{2}}+ab{{c}^{2}}+a{{b}^{2}}c)+ \\
& ({{b}^{2}}+bc)({{a}^{3}}b+2{{a}^{2}}bc+{{a}^{2}}{{c}^{2}}+{{a}^{3}}c+ab{{c}^{2}})+ \\
& ({{c}^{2}}+bc)({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+2{{a}^{2}}bc+{{a}^{3}}c) \\
& ={{(ab+bc+ca)}^{3}} \\
\end{align}\]
Since the determinant of the coplanar matrix is equal to zero, we can write
$\begin{align}
& {{(ab+bc+ca)}^{3}}=0 \\
& (ab+bc+ca)=0 \\
\end{align}$
Thus, Option (B) is correct.
Additional Information: Important vector identities for solving vector equations are:
\[\overrightarrow{a}\times \overrightarrow{a}=0\]
\[[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{a}]=0\]
\[\begin{align}
& \overrightarrow{i}\cdot \overrightarrow{i}=\overrightarrow{j}\cdot \overrightarrow{j}=\overrightarrow{k}\cdot \overrightarrow{k}=1 \\
& \overrightarrow{i}\times \overrightarrow{j}=\overrightarrow{k} \\
& \overrightarrow{j}\times \overrightarrow{k}=\overrightarrow{i} \\
& \overrightarrow{k}\times \overrightarrow{i}=\overrightarrow{j} \\
\end{align}\]
Note: We can see from the above concept that the value of the determinant of the coefficient matrix is 0, which is calculated using the concept of coplanarity and the matrix method of determination of determinants of vectors.
Formula used: Scalar triple product of three vectors:
We have the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as
\[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}+{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}+{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}+{{c}_{3}}\overrightarrow{k} \\
\end{align}\]
Then, the triple product is calculated by,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
Thus, the volume of a 3D structure is calculated by $V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]$
Complete step by step solution: Here, we are given the three vectors which are coplanar
\[\begin{align}
& (-bc,{{b}^{2}}+bc,{{c}^{2}}+bc) \\
& ({{a}^{2}}+ac,-ac,{{c}^{2}}+ac) \\
& ({{a}^{2}}+ab,{{b}^{2}}+ab,-ab) \\
\end{align}\]
Then, by the scalar triple product of these vectors, we get
\[\begin{align}
& [\overrightarrow{A}\text{ }\overrightarrow{B}\text{ }\overrightarrow{C}]=\left| \begin{matrix}
-bc & {{b}^{2}}+bc & {{c}^{2}}+bc \\
{{a}^{2}}+ac & -ac & {{c}^{2}}+ac \\
{{a}^{2}}+ab & {{b}^{2}}+ab & -ab \\
\end{matrix} \right| \\
& =-bc\left[ (-ac\times -ab)-(({{c}^{2}}+ac)({{b}^{2}}+ab)) \right]- \\
& ({{b}^{2}}+bc)\left[ ({{a}^{2}}+ac)(-ab)-({{a}^{2}}+ab)({{c}^{2}}+ac) \right]+ \\
& ({{c}^{2}}+bc)\left[ ({{a}^{2}}+ac)({{b}^{2}}+ab)-({{a}^{2}}+ab)(-ac) \right] \\
& =-bc\left[ {{a}^{2}}bc-({{c}^{2}}{{b}^{2}}+ab{{c}^{2}}+a{{b}^{2}}c+{{a}^{2}}bc) \right]- \\
& ({{b}^{2}}+bc)\left[ (-{{a}^{3}}b-{{a}^{2}}bc)-({{a}^{2}}{{c}^{2}}+{{a}^{3}}c+ab{{c}^{2}}+{{a}^{2}}bc) \right]+ \\
& ({{c}^{2}}+bc)\left[ ({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+{{a}^{2}}bc)-(-{{a}^{3}}c-{{a}^{2}}bc) \right] \\
& =-bc({{a}^{2}}bc-{{c}^{2}}{{b}^{2}}-ab{{c}^{2}}-a{{b}^{2}}c-{{a}^{2}}bc)- \\
& ({{b}^{2}}+bc)(-{{a}^{3}}b-{{a}^{2}}bc-{{a}^{2}}{{c}^{2}}-{{a}^{3}}c-ab{{c}^{2}}-{{a}^{2}}bc)+ \\
& ({{c}^{2}}+bc)({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+{{a}^{2}}bc+{{a}^{3}}c+{{a}^{2}}bc) \\
\end{align}\]
\[\begin{align}
& =-bc(-{{c}^{2}}{{b}^{2}}-ab{{c}^{2}}-a{{b}^{2}}c)- \\
& ({{b}^{2}}+bc)(-{{a}^{3}}b-2{{a}^{2}}bc-{{a}^{2}}{{c}^{2}}-{{a}^{3}}c-ab{{c}^{2}})+ \\
& ({{c}^{2}}+bc)({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+2{{a}^{2}}bc+{{a}^{3}}c) \\
& =bc({{c}^{2}}{{b}^{2}}+ab{{c}^{2}}+a{{b}^{2}}c)+ \\
& ({{b}^{2}}+bc)({{a}^{3}}b+2{{a}^{2}}bc+{{a}^{2}}{{c}^{2}}+{{a}^{3}}c+ab{{c}^{2}})+ \\
& ({{c}^{2}}+bc)({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+2{{a}^{2}}bc+{{a}^{3}}c) \\
& ={{(ab+bc+ca)}^{3}} \\
\end{align}\]
Since the determinant of the coplanar matrix is equal to zero, we can write
$\begin{align}
& {{(ab+bc+ca)}^{3}}=0 \\
& (ab+bc+ca)=0 \\
\end{align}$
Thus, Option (B) is correct.
Additional Information: Important vector identities for solving vector equations are:
\[\overrightarrow{a}\times \overrightarrow{a}=0\]
\[[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{a}]=0\]
\[\begin{align}
& \overrightarrow{i}\cdot \overrightarrow{i}=\overrightarrow{j}\cdot \overrightarrow{j}=\overrightarrow{k}\cdot \overrightarrow{k}=1 \\
& \overrightarrow{i}\times \overrightarrow{j}=\overrightarrow{k} \\
& \overrightarrow{j}\times \overrightarrow{k}=\overrightarrow{i} \\
& \overrightarrow{k}\times \overrightarrow{i}=\overrightarrow{j} \\
\end{align}\]
Note: We can see from the above concept that the value of the determinant of the coefficient matrix is 0, which is calculated using the concept of coplanarity and the matrix method of determination of determinants of vectors.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
