
If the given vectors \[(-bc,{{b}^{2}}+bc,{{c}^{2}}+bc)\], \[({{a}^{2}}+ac,-ac,{{c}^{2}}+ac)\], and \[({{a}^{2}}+ab,{{b}^{2}}+ab,-ab)\] are coplanar, where none of $a$, $b$, and $c$ is zero, then
A. \[({{a}^{2}}+{{b}^{2}}+{{c}^{2}})=1\]
B. \[(bc+ca+ab)=0\]
C. \[(a+b+c)=0\]
D. \[({{a}^{2}}+{{b}^{2}}+{{c}^{2}})=(bc+ca+ab)\]
Answer
232.8k+ views
Hint: In the above question, we need to find the condition that holds true if we solve the three given coplanar vectors. In order to find which condition holds true on solving the given vectors we should know the concept of coplanarity, and the matrix method of determination of determinants of vectors.
Formula used: Scalar triple product of three vectors:
We have the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as
\[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}+{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}+{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}+{{c}_{3}}\overrightarrow{k} \\
\end{align}\]
Then, the triple product is calculated by,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
Thus, the volume of a 3D structure is calculated by $V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]$
Complete step by step solution: Here, we are given the three vectors which are coplanar
\[\begin{align}
& (-bc,{{b}^{2}}+bc,{{c}^{2}}+bc) \\
& ({{a}^{2}}+ac,-ac,{{c}^{2}}+ac) \\
& ({{a}^{2}}+ab,{{b}^{2}}+ab,-ab) \\
\end{align}\]
Then, by the scalar triple product of these vectors, we get
\[\begin{align}
& [\overrightarrow{A}\text{ }\overrightarrow{B}\text{ }\overrightarrow{C}]=\left| \begin{matrix}
-bc & {{b}^{2}}+bc & {{c}^{2}}+bc \\
{{a}^{2}}+ac & -ac & {{c}^{2}}+ac \\
{{a}^{2}}+ab & {{b}^{2}}+ab & -ab \\
\end{matrix} \right| \\
& =-bc\left[ (-ac\times -ab)-(({{c}^{2}}+ac)({{b}^{2}}+ab)) \right]- \\
& ({{b}^{2}}+bc)\left[ ({{a}^{2}}+ac)(-ab)-({{a}^{2}}+ab)({{c}^{2}}+ac) \right]+ \\
& ({{c}^{2}}+bc)\left[ ({{a}^{2}}+ac)({{b}^{2}}+ab)-({{a}^{2}}+ab)(-ac) \right] \\
& =-bc\left[ {{a}^{2}}bc-({{c}^{2}}{{b}^{2}}+ab{{c}^{2}}+a{{b}^{2}}c+{{a}^{2}}bc) \right]- \\
& ({{b}^{2}}+bc)\left[ (-{{a}^{3}}b-{{a}^{2}}bc)-({{a}^{2}}{{c}^{2}}+{{a}^{3}}c+ab{{c}^{2}}+{{a}^{2}}bc) \right]+ \\
& ({{c}^{2}}+bc)\left[ ({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+{{a}^{2}}bc)-(-{{a}^{3}}c-{{a}^{2}}bc) \right] \\
& =-bc({{a}^{2}}bc-{{c}^{2}}{{b}^{2}}-ab{{c}^{2}}-a{{b}^{2}}c-{{a}^{2}}bc)- \\
& ({{b}^{2}}+bc)(-{{a}^{3}}b-{{a}^{2}}bc-{{a}^{2}}{{c}^{2}}-{{a}^{3}}c-ab{{c}^{2}}-{{a}^{2}}bc)+ \\
& ({{c}^{2}}+bc)({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+{{a}^{2}}bc+{{a}^{3}}c+{{a}^{2}}bc) \\
\end{align}\]
\[\begin{align}
& =-bc(-{{c}^{2}}{{b}^{2}}-ab{{c}^{2}}-a{{b}^{2}}c)- \\
& ({{b}^{2}}+bc)(-{{a}^{3}}b-2{{a}^{2}}bc-{{a}^{2}}{{c}^{2}}-{{a}^{3}}c-ab{{c}^{2}})+ \\
& ({{c}^{2}}+bc)({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+2{{a}^{2}}bc+{{a}^{3}}c) \\
& =bc({{c}^{2}}{{b}^{2}}+ab{{c}^{2}}+a{{b}^{2}}c)+ \\
& ({{b}^{2}}+bc)({{a}^{3}}b+2{{a}^{2}}bc+{{a}^{2}}{{c}^{2}}+{{a}^{3}}c+ab{{c}^{2}})+ \\
& ({{c}^{2}}+bc)({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+2{{a}^{2}}bc+{{a}^{3}}c) \\
& ={{(ab+bc+ca)}^{3}} \\
\end{align}\]
Since the determinant of the coplanar matrix is equal to zero, we can write
$\begin{align}
& {{(ab+bc+ca)}^{3}}=0 \\
& (ab+bc+ca)=0 \\
\end{align}$
Thus, Option (B) is correct.
Additional Information: Important vector identities for solving vector equations are:
\[\overrightarrow{a}\times \overrightarrow{a}=0\]
\[[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{a}]=0\]
\[\begin{align}
& \overrightarrow{i}\cdot \overrightarrow{i}=\overrightarrow{j}\cdot \overrightarrow{j}=\overrightarrow{k}\cdot \overrightarrow{k}=1 \\
& \overrightarrow{i}\times \overrightarrow{j}=\overrightarrow{k} \\
& \overrightarrow{j}\times \overrightarrow{k}=\overrightarrow{i} \\
& \overrightarrow{k}\times \overrightarrow{i}=\overrightarrow{j} \\
\end{align}\]
Note: We can see from the above concept that the value of the determinant of the coefficient matrix is 0, which is calculated using the concept of coplanarity and the matrix method of determination of determinants of vectors.
Formula used: Scalar triple product of three vectors:
We have the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as
\[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}+{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}+{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}+{{c}_{3}}\overrightarrow{k} \\
\end{align}\]
Then, the triple product is calculated by,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
Thus, the volume of a 3D structure is calculated by $V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]$
Complete step by step solution: Here, we are given the three vectors which are coplanar
\[\begin{align}
& (-bc,{{b}^{2}}+bc,{{c}^{2}}+bc) \\
& ({{a}^{2}}+ac,-ac,{{c}^{2}}+ac) \\
& ({{a}^{2}}+ab,{{b}^{2}}+ab,-ab) \\
\end{align}\]
Then, by the scalar triple product of these vectors, we get
\[\begin{align}
& [\overrightarrow{A}\text{ }\overrightarrow{B}\text{ }\overrightarrow{C}]=\left| \begin{matrix}
-bc & {{b}^{2}}+bc & {{c}^{2}}+bc \\
{{a}^{2}}+ac & -ac & {{c}^{2}}+ac \\
{{a}^{2}}+ab & {{b}^{2}}+ab & -ab \\
\end{matrix} \right| \\
& =-bc\left[ (-ac\times -ab)-(({{c}^{2}}+ac)({{b}^{2}}+ab)) \right]- \\
& ({{b}^{2}}+bc)\left[ ({{a}^{2}}+ac)(-ab)-({{a}^{2}}+ab)({{c}^{2}}+ac) \right]+ \\
& ({{c}^{2}}+bc)\left[ ({{a}^{2}}+ac)({{b}^{2}}+ab)-({{a}^{2}}+ab)(-ac) \right] \\
& =-bc\left[ {{a}^{2}}bc-({{c}^{2}}{{b}^{2}}+ab{{c}^{2}}+a{{b}^{2}}c+{{a}^{2}}bc) \right]- \\
& ({{b}^{2}}+bc)\left[ (-{{a}^{3}}b-{{a}^{2}}bc)-({{a}^{2}}{{c}^{2}}+{{a}^{3}}c+ab{{c}^{2}}+{{a}^{2}}bc) \right]+ \\
& ({{c}^{2}}+bc)\left[ ({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+{{a}^{2}}bc)-(-{{a}^{3}}c-{{a}^{2}}bc) \right] \\
& =-bc({{a}^{2}}bc-{{c}^{2}}{{b}^{2}}-ab{{c}^{2}}-a{{b}^{2}}c-{{a}^{2}}bc)- \\
& ({{b}^{2}}+bc)(-{{a}^{3}}b-{{a}^{2}}bc-{{a}^{2}}{{c}^{2}}-{{a}^{3}}c-ab{{c}^{2}}-{{a}^{2}}bc)+ \\
& ({{c}^{2}}+bc)({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+{{a}^{2}}bc+{{a}^{3}}c+{{a}^{2}}bc) \\
\end{align}\]
\[\begin{align}
& =-bc(-{{c}^{2}}{{b}^{2}}-ab{{c}^{2}}-a{{b}^{2}}c)- \\
& ({{b}^{2}}+bc)(-{{a}^{3}}b-2{{a}^{2}}bc-{{a}^{2}}{{c}^{2}}-{{a}^{3}}c-ab{{c}^{2}})+ \\
& ({{c}^{2}}+bc)({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+2{{a}^{2}}bc+{{a}^{3}}c) \\
& =bc({{c}^{2}}{{b}^{2}}+ab{{c}^{2}}+a{{b}^{2}}c)+ \\
& ({{b}^{2}}+bc)({{a}^{3}}b+2{{a}^{2}}bc+{{a}^{2}}{{c}^{2}}+{{a}^{3}}c+ab{{c}^{2}})+ \\
& ({{c}^{2}}+bc)({{a}^{2}}{{b}^{2}}+{{a}^{3}}b+a{{b}^{2}}c+2{{a}^{2}}bc+{{a}^{3}}c) \\
& ={{(ab+bc+ca)}^{3}} \\
\end{align}\]
Since the determinant of the coplanar matrix is equal to zero, we can write
$\begin{align}
& {{(ab+bc+ca)}^{3}}=0 \\
& (ab+bc+ca)=0 \\
\end{align}$
Thus, Option (B) is correct.
Additional Information: Important vector identities for solving vector equations are:
\[\overrightarrow{a}\times \overrightarrow{a}=0\]
\[[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{a}]=0\]
\[\begin{align}
& \overrightarrow{i}\cdot \overrightarrow{i}=\overrightarrow{j}\cdot \overrightarrow{j}=\overrightarrow{k}\cdot \overrightarrow{k}=1 \\
& \overrightarrow{i}\times \overrightarrow{j}=\overrightarrow{k} \\
& \overrightarrow{j}\times \overrightarrow{k}=\overrightarrow{i} \\
& \overrightarrow{k}\times \overrightarrow{i}=\overrightarrow{j} \\
\end{align}\]
Note: We can see from the above concept that the value of the determinant of the coefficient matrix is 0, which is calculated using the concept of coplanarity and the matrix method of determination of determinants of vectors.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

