
If the four complex numbers $z,\,\,\overline z ,\,\overline z - 2\operatorname{Re} \overline z ,\,z - 2\operatorname{Re} (z)$ represent the vertices of a square of side 4 units in the Argand plane, then $|z|$ is equal to
A) $2$
B) $4$
C) $4\sqrt 2 $
D) $2\sqrt 2 $
Answer
164.7k+ views
Hint: Draw a diagram with the four vertices as $z,\,\,\overline z ,\,\overline z - 2\operatorname{Re} \overline z ,\,z - 2\operatorname{Re} (z)$ in a way such that $z\,{\text{and}}\,\,\overline z - 2\operatorname{Re} \overline z $; $\overline z \,{\text{and}}\,z - 2\operatorname{Re} (z)$ are the two pairs of diagonally opposite points. After finding x and y from the diagram, use the formula \[|z|\, = \,\sqrt {{x^2} + {y^2}} \].
Complete step by step Solution:
Let $z = x + iy$,
Then, \[\overline z = x - iy\,\], $\overline z - 2\operatorname{Re} \overline z = x - iy - 2x = - x - iy$ and $z - 2\operatorname{Re} (z) = x + iy - 2x = - x + iy$
Representing this as a diagram we get,

It is given to us that each side is 4 units. Therefore,
$AB = BC = CD = DA = 4\,{\text{units}}$
$AB = \,|z - \overline z |\, = \,|2y|\, = 4$ units
$|y|\, = \,2$ units
$BC = \,|\overline z - (\overline z - 2\operatorname{Re} (\overline z ))|\, = \,|2x|\, = 4$ units
$|x|\, = \,2$ units
$|z|\, = \,\sqrt {{x^2} + {y^2}} = \sqrt {{2^2} + {2^2}} = 2\sqrt 2 $ units
Hence, the correct option is (D).
Note: Care must be taken while choosing the diagonally opposite points. In the diagram, $A$ cannot be diagonally opposite to $B$ or $D$. We can also find the values of $x$ and $y$ from $CD$ and $DA$ instead of $AB$ and $BC$.
Complete step by step Solution:
Let $z = x + iy$,
Then, \[\overline z = x - iy\,\], $\overline z - 2\operatorname{Re} \overline z = x - iy - 2x = - x - iy$ and $z - 2\operatorname{Re} (z) = x + iy - 2x = - x + iy$
Representing this as a diagram we get,

It is given to us that each side is 4 units. Therefore,
$AB = BC = CD = DA = 4\,{\text{units}}$
$AB = \,|z - \overline z |\, = \,|2y|\, = 4$ units
$|y|\, = \,2$ units
$BC = \,|\overline z - (\overline z - 2\operatorname{Re} (\overline z ))|\, = \,|2x|\, = 4$ units
$|x|\, = \,2$ units
$|z|\, = \,\sqrt {{x^2} + {y^2}} = \sqrt {{2^2} + {2^2}} = 2\sqrt 2 $ units
Hence, the correct option is (D).
Note: Care must be taken while choosing the diagonally opposite points. In the diagram, $A$ cannot be diagonally opposite to $B$ or $D$. We can also find the values of $x$ and $y$ from $CD$ and $DA$ instead of $AB$ and $BC$.
Recently Updated Pages
Environmental Chemistry Chapter for JEE Main Chemistry

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
