
If the coordinates of the points A, B, and C be \[(4,4),(3, - 2),(3, - 16)\] respectively, then find the area of the triangle ABC.
A. 27
B. 15
C. 18
D. 7
Answer
216.6k+ views
Hints First write the formula of the area of a triangle, then substitute the given coordinates in the formula to obtain the required result.
Formula used
Area=\[\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]\] , where \[({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})\] are the vertices of the triangle.
Complete step by step solution
Substitute \[({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})\] by \[(4,4),(3, - 2),(3, - 16)\] in the formula \[\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]\]and calculate to obtain the required area.
\[\dfrac{1}{2}\left[ {4\left( { - 2 + 16} \right) + 3( - 16 - 4) + 3(4 + 2)} \right]\]
\[ = \dfrac{1}{2}\left[ {56 - 60 + 18} \right]\]
\[ = \dfrac{{14}}{2}\]
=7
The correct option is “D”.
Note While calculating the area of the triangle when the Cartesian coordinates are given, one can also proceed by first plotting the triangle on an X-Y graph. This process can help in identifying the type of triangle that is whether it is an equilateral triangle, isosceles triangle, or right triangle. If we can identify that the triangle is one of them, we can easily calculate the area of the triangle, by using the respective formulas for these special types of triangles. This greatly reduces the time taken in calculating the area of the triangle. If the triangle is not of any special type then use just the general formula. This is also a good approach to doing this type of question.
Formula used
Area=\[\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]\] , where \[({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})\] are the vertices of the triangle.
Complete step by step solution
Substitute \[({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})\] by \[(4,4),(3, - 2),(3, - 16)\] in the formula \[\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]\]and calculate to obtain the required area.
\[\dfrac{1}{2}\left[ {4\left( { - 2 + 16} \right) + 3( - 16 - 4) + 3(4 + 2)} \right]\]
\[ = \dfrac{1}{2}\left[ {56 - 60 + 18} \right]\]
\[ = \dfrac{{14}}{2}\]
=7
The correct option is “D”.
Note While calculating the area of the triangle when the Cartesian coordinates are given, one can also proceed by first plotting the triangle on an X-Y graph. This process can help in identifying the type of triangle that is whether it is an equilateral triangle, isosceles triangle, or right triangle. If we can identify that the triangle is one of them, we can easily calculate the area of the triangle, by using the respective formulas for these special types of triangles. This greatly reduces the time taken in calculating the area of the triangle. If the triangle is not of any special type then use just the general formula. This is also a good approach to doing this type of question.
Recently Updated Pages
JEE Main 2024 (January 24 Shift 1) Question Paper with Solutions [PDF]

Progressive Wave: Meaning, Types & Examples Explained

Temperature Dependence of Resistivity Explained

JEE Main 2024 (January 25 Shift 1) Physics Question Paper with Solutions [PDF]

Difference Between Vectors and Scalars: JEE Main 2026

Salt Hydrolysis IIT JEE | Aсіdіtу and Alkаlіnіtу of Sаlt Sоlutіоns JEE Chemistry

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main 2026 Chapter-Wise Syllabus for Physics, Chemistry and Maths – Download PDF

JEE Main Previous Year Question Paper with Answer Keys and Solutions

Understanding Newton’s Laws of Motion

JEE Main Cut Off 2026 - Expected Qualifying Marks and Percentile Category Wise

Marks vs Percentile JEE Mains 2026: Calculate Percentile Marks

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions for Class 10 Maths Chapter 15 Probability

Complete List of Class 10 Maths Formulas (Chapterwise)

