
If the centroid of a triangle whose vertices are (a, 1, 3), (-2, b, -5) and (4, 7, c) is the origin, then the values of a, b, c are
A. (-2, -8, -2)
B. (2, 8, -2)
C. (-2, -8, 2)
D. (7, -1, 0)
Answer
163.5k+ views
Hint: The centroid of a triangle whose vertices are given by the coordinates $({x_1},{y_1},{z_1}),\,({x_2},{y_2},{z_2})\,{\text{and}}\,({x_3},{y_3},{z_3})$ is given by the formula, $G = (\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3},\dfrac{{{z_1} + {z_2} + {z_3}}}{3})$. Solve the three linear equations in one variable to get the values of a, b and c.
Formula Used:
$G = (\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3},\dfrac{{{z_1} + {z_2} + {z_3}}}{3})$.
Complete step by step solution:
We know that the centroid of a triangle whose vertices are given by the coordinates $({x_1},{y_1},{z_1}),\,({x_2},{y_2},{z_2})\,{\text{and}}\,({x_3},{y_3},{z_3})$ is given by the formula, $G = (\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3},\dfrac{{{z_1} + {z_2} + {z_3}}}{3})$
$(0,0,0) = (\dfrac{{a - 2 + 4}}{3},\dfrac{{1 + b + 7}}{3},\dfrac{{3 - 5 + c}}{3})$
$(0,0,0) = (\dfrac{{2 + a}}{3},\dfrac{{8 + b}}{3},\dfrac{{ - 2 + c}}{3})$
$\dfrac{{2 + a}}{3} = 0 \Rightarrow 2 + a = 0 \Rightarrow a = - 2$
$\dfrac{{8 + b}}{3} = 0 \Rightarrow 8 + b = 0 \Rightarrow b = - 8$
$\dfrac{{ - 2 + c}}{3} = 0 \Rightarrow - 2 + c = 0 \Rightarrow c = 2$
Therefore, a = -2, b = -8, c = 2
The correct option is option (C) (-2, -8, 2)
Note: The centroid of a triangle is a point inside the triangle from which all the vertices are equidistant. If any of the coordinates of the centroid of the triangle does not lie between the smallest and largest values of that coordinate in the three vertices, then there must be a calculation error.
Formula Used:
$G = (\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3},\dfrac{{{z_1} + {z_2} + {z_3}}}{3})$.
Complete step by step solution:
We know that the centroid of a triangle whose vertices are given by the coordinates $({x_1},{y_1},{z_1}),\,({x_2},{y_2},{z_2})\,{\text{and}}\,({x_3},{y_3},{z_3})$ is given by the formula, $G = (\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3},\dfrac{{{z_1} + {z_2} + {z_3}}}{3})$
$(0,0,0) = (\dfrac{{a - 2 + 4}}{3},\dfrac{{1 + b + 7}}{3},\dfrac{{3 - 5 + c}}{3})$
$(0,0,0) = (\dfrac{{2 + a}}{3},\dfrac{{8 + b}}{3},\dfrac{{ - 2 + c}}{3})$
$\dfrac{{2 + a}}{3} = 0 \Rightarrow 2 + a = 0 \Rightarrow a = - 2$
$\dfrac{{8 + b}}{3} = 0 \Rightarrow 8 + b = 0 \Rightarrow b = - 8$
$\dfrac{{ - 2 + c}}{3} = 0 \Rightarrow - 2 + c = 0 \Rightarrow c = 2$
Therefore, a = -2, b = -8, c = 2
The correct option is option (C) (-2, -8, 2)
Note: The centroid of a triangle is a point inside the triangle from which all the vertices are equidistant. If any of the coordinates of the centroid of the triangle does not lie between the smallest and largest values of that coordinate in the three vertices, then there must be a calculation error.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions
