Answer
Verified
105.6k+ views
Hint At mean position velocity is max as the kinetic energy is max and acceleration is angular which is zero because angle made by the pendulum with the vertical is zero.
Complete step-by-step solution
In an oscillatory motion of a simple pendulum, we know that the kinetic energy of the bob is max at the mean position. Kinetic energy is given by
$K = \dfrac{1}{2}m{v^2}$
As kinetic energy is max only due to velocity, at mean position the velocity is max.
The weight of the bob W=mg is resolved into vector components, the cos component is balanced by the tension of the string and sin component is along the circular path of the pendulum. As the motion is part of the circular motion the acceleration is given by
$\alpha = - \dfrac{{mgL}}{I}\sin \theta $
At mean position θ is zero therefore,
$
\sin 0 = 0 \\
\alpha = 0 \\
$
Hence at mean position, velocity is max and acceleration is zero
correct option is A
Note Kinetic energy is zero at extreme position as velocity is zero and potential energy is maximum. Potential energy is minimum at the mean position which is also the lowest position.
If the motion of the pendulum makes a very small angle, then this motion can be approximated to Simple Harmonics Motion. One will need this information to solve SHM and pendulum involving questions.
Complete step-by-step solution
In an oscillatory motion of a simple pendulum, we know that the kinetic energy of the bob is max at the mean position. Kinetic energy is given by
$K = \dfrac{1}{2}m{v^2}$
As kinetic energy is max only due to velocity, at mean position the velocity is max.
The weight of the bob W=mg is resolved into vector components, the cos component is balanced by the tension of the string and sin component is along the circular path of the pendulum. As the motion is part of the circular motion the acceleration is given by
$\alpha = - \dfrac{{mgL}}{I}\sin \theta $
At mean position θ is zero therefore,
$
\sin 0 = 0 \\
\alpha = 0 \\
$
Hence at mean position, velocity is max and acceleration is zero
correct option is A
Note Kinetic energy is zero at extreme position as velocity is zero and potential energy is maximum. Potential energy is minimum at the mean position which is also the lowest position.
If the motion of the pendulum makes a very small angle, then this motion can be approximated to Simple Harmonics Motion. One will need this information to solve SHM and pendulum involving questions.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main