
If the arithmetic, geometric and harmonic means between two positive real numbers be \[A,G\] and\[H\], then
A. \[{A^2} = GH\]
В. \[{H^2} = AG\]
C. \[G = AH\]
D. \[{G^2} = AH\]
Answer
232.8k+ views
Hint:
In this type of question, we must use formulas of various means. The three Pythagorean means are known as the arithmetic mean (AM), geometric mean (GM), and harmonic mean (HM). Also, if “a” and “b” are positive numbers, Arithmetic Mean \[AM = \frac{{(a + b)}}{2}\], Geometric Mean (GM) \[ = \sqrt {ab} \], and Harmonic Mean (HM) \[ = \frac{{(2ab)}}{{(a + b)}}\].
Formula used:
\[AM = \frac{{(a + b)}}{2}\]
(GM) \[ = \sqrt {ab} \]
(HM) \[ = \frac{{(2ab)}}{{(a + b)}}\]
Complete step-by-step solution:
Now we must determine the relationship between the arithmetic, geometric, and harmonic means of two distinct positive real numbers denoted by A, G, and H, respectively.
Assume “a” and “b” are two distinct positive real numbers, and we get.
Arithmetic Mean as,
\[ \Rightarrow AM = A = \frac{{(a + b)}}{2}\]--- (1)
Geometric Mean as,
\[ \Rightarrow GM = G = \sqrt {ab} \]--- (2)
Harmonic Mean as,
\[ \Rightarrow HM = H = \frac{{2ab}}{{(a + b)}}\]--- (3)
Now consider Arithmetic mean and Harmonic mean
\[{\rm{AH}} = \left( {\frac{{{\rm{a}} + {\rm{b}}}}{2}} \right)\left( {\frac{{2{\rm{ab}}}}{{{\rm{a}} + {\rm{b}}}}} \right)\]
Apply rule\[\left( {\frac{{2ab}}{{a + b}}} \right) = \frac{{2ab}}{{a + b}}\]:
\[ = \frac{{a + b}}{2} \cdot \frac{{2ab}}{{a + b}}\]
Cross cancel common factor \[\left( {a + b} \right)\]:
\[ = \frac{{2ab}}{2}\]
Cancel the common factor in the above equation:
\[{\rm{ = ab}}\]
Therefore, if the arithmetic, geometric and harmonic means between two positive real numbers be\[A,G\] and \[H\], then \[{\rm{AH}} = {\rm{ab}}\]
From equation (2),
To discover the relationship, consider the expression
\[{\rm{AH}} = {{\rm{G}}^2}\]
Since \[{\rm{AH}} = {{\rm{G}}^2}\], therefore, \[{\rm{A}},{\rm{G}}\] and \[{\rm{H}}\]are in G.P.
Hence, the correct answer is option D.
Note:
Students must remember the arithmetic mean, geometric mean, and harmonic mean formulas for this type of question. Students must exercise caution when simplifying the distinction between AM and GM, as well as GM and HM. Students must also remember that because both differences are in the form of squares, the differences must be greater than or equal to zero.
In this type of question, we must use formulas of various means. The three Pythagorean means are known as the arithmetic mean (AM), geometric mean (GM), and harmonic mean (HM). Also, if “a” and “b” are positive numbers, Arithmetic Mean \[AM = \frac{{(a + b)}}{2}\], Geometric Mean (GM) \[ = \sqrt {ab} \], and Harmonic Mean (HM) \[ = \frac{{(2ab)}}{{(a + b)}}\].
Formula used:
\[AM = \frac{{(a + b)}}{2}\]
(GM) \[ = \sqrt {ab} \]
(HM) \[ = \frac{{(2ab)}}{{(a + b)}}\]
Complete step-by-step solution:
Now we must determine the relationship between the arithmetic, geometric, and harmonic means of two distinct positive real numbers denoted by A, G, and H, respectively.
Assume “a” and “b” are two distinct positive real numbers, and we get.
Arithmetic Mean as,
\[ \Rightarrow AM = A = \frac{{(a + b)}}{2}\]--- (1)
Geometric Mean as,
\[ \Rightarrow GM = G = \sqrt {ab} \]--- (2)
Harmonic Mean as,
\[ \Rightarrow HM = H = \frac{{2ab}}{{(a + b)}}\]--- (3)
Now consider Arithmetic mean and Harmonic mean
\[{\rm{AH}} = \left( {\frac{{{\rm{a}} + {\rm{b}}}}{2}} \right)\left( {\frac{{2{\rm{ab}}}}{{{\rm{a}} + {\rm{b}}}}} \right)\]
Apply rule\[\left( {\frac{{2ab}}{{a + b}}} \right) = \frac{{2ab}}{{a + b}}\]:
\[ = \frac{{a + b}}{2} \cdot \frac{{2ab}}{{a + b}}\]
Cross cancel common factor \[\left( {a + b} \right)\]:
\[ = \frac{{2ab}}{2}\]
Cancel the common factor in the above equation:
\[{\rm{ = ab}}\]
Therefore, if the arithmetic, geometric and harmonic means between two positive real numbers be\[A,G\] and \[H\], then \[{\rm{AH}} = {\rm{ab}}\]
From equation (2),
To discover the relationship, consider the expression
\[{\rm{AH}} = {{\rm{G}}^2}\]
Since \[{\rm{AH}} = {{\rm{G}}^2}\], therefore, \[{\rm{A}},{\rm{G}}\] and \[{\rm{H}}\]are in G.P.
Hence, the correct answer is option D.
Note:
Students must remember the arithmetic mean, geometric mean, and harmonic mean formulas for this type of question. Students must exercise caution when simplifying the distinction between AM and GM, as well as GM and HM. Students must also remember that because both differences are in the form of squares, the differences must be greater than or equal to zero.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

