If the angular momentum of an electron in an orbit is J then the kinetic energy of the electron in that orbit is,
A. \[\dfrac{{{J^2}}}{{2m{r^2}}} \\ \]
B. \[\dfrac{{Jv}}{r} \\ \]
C. \[\dfrac{{{J^2}}}{{2m}} \\ \]
D. \[\dfrac{{{J^2}}}{{2\pi }}\]
Answer
Verified
118.8k+ views
Hint:We deduce the linear speed of the electron in the orbit from the given expression for the angular momentum. When we get the linear speed we put in the expression for the kinetic energy to find the kinetic energy of the electron.
Formula used:
\[L = mvr\]
where L is the angular momentum of the particle of mass m in a circular orbit of radius r with linear speed v.
\[K = \dfrac{1}{2}m{v^2}\]
where K is the kinetic energy of the body of mass m moving with speed v.
Complete step by step solution:
When a particle is moving around a circular path then the angular momentum of the particle is the product of the moment of inertia about the axis of rotation and the angular speed.The electron is considered as a point mass.
It is given that the angular speed of an electron in an orbit is J. If the speed of the electron in the orbit is v, then using the formula of angular momentum
\[mvr = J\]
\[\Rightarrow v = \dfrac{J}{{mr}}\]
So, the speed of the electron in the orbit is \[\dfrac{J}{{mr}}\] here r is the radius of the orbit.
Using the kinetic energy formula,
\[K = \dfrac{1}{2}m{v^2} \\ \]
\[\Rightarrow K = \dfrac{1}{2}m{\left( {\dfrac{J}{{mr}}} \right)^2} \\ \]
\[\Rightarrow K = \dfrac{1}{2}m \times \dfrac{{{J^2}}}{{{m^2}{r^2}}} \\ \]
\[\therefore K = \dfrac{{{J^2}}}{{2m{r^2}}}\]
Hence, the kinetic energy of the electron is \[\dfrac{{{J^2}}}{{2m{r^2}}}\].
Therefore, the correct option is A.
Note: Though the speed of the electron in the orbit is very high, we don’t consider the relativistic case to find the momentum or the kinetic energy because the energy of the electron is less than the threshold energy for the relativistic motion.
Formula used:
\[L = mvr\]
where L is the angular momentum of the particle of mass m in a circular orbit of radius r with linear speed v.
\[K = \dfrac{1}{2}m{v^2}\]
where K is the kinetic energy of the body of mass m moving with speed v.
Complete step by step solution:
When a particle is moving around a circular path then the angular momentum of the particle is the product of the moment of inertia about the axis of rotation and the angular speed.The electron is considered as a point mass.
It is given that the angular speed of an electron in an orbit is J. If the speed of the electron in the orbit is v, then using the formula of angular momentum
\[mvr = J\]
\[\Rightarrow v = \dfrac{J}{{mr}}\]
So, the speed of the electron in the orbit is \[\dfrac{J}{{mr}}\] here r is the radius of the orbit.
Using the kinetic energy formula,
\[K = \dfrac{1}{2}m{v^2} \\ \]
\[\Rightarrow K = \dfrac{1}{2}m{\left( {\dfrac{J}{{mr}}} \right)^2} \\ \]
\[\Rightarrow K = \dfrac{1}{2}m \times \dfrac{{{J^2}}}{{{m^2}{r^2}}} \\ \]
\[\therefore K = \dfrac{{{J^2}}}{{2m{r^2}}}\]
Hence, the kinetic energy of the electron is \[\dfrac{{{J^2}}}{{2m{r^2}}}\].
Therefore, the correct option is A.
Note: Though the speed of the electron in the orbit is very high, we don’t consider the relativistic case to find the momentum or the kinetic energy because the energy of the electron is less than the threshold energy for the relativistic motion.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Explain the construction and working of a GeigerMuller class 12 physics JEE_Main
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
JEE Main 2025 Helpline Numbers for Aspiring Candidates
Other Pages
A combination of five resistors is connected to a cell class 12 physics JEE_Main
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
Christmas Day 2024 - Origin, History, and Why Do We Celebrate It
Essay on Christmas: Celebrating the Spirit of the Season
JEE Main Physics Question Paper PDF Download with Answer Key