
If the angular momentum of an electron in an orbit is J then the kinetic energy of the electron in that orbit is,
A. \[\dfrac{{{J^2}}}{{2m{r^2}}} \\ \]
B. \[\dfrac{{Jv}}{r} \\ \]
C. \[\dfrac{{{J^2}}}{{2m}} \\ \]
D. \[\dfrac{{{J^2}}}{{2\pi }}\]
Answer
216.9k+ views
Hint:We deduce the linear speed of the electron in the orbit from the given expression for the angular momentum. When we get the linear speed we put in the expression for the kinetic energy to find the kinetic energy of the electron.
Formula used:
\[L = mvr\]
where L is the angular momentum of the particle of mass m in a circular orbit of radius r with linear speed v.
\[K = \dfrac{1}{2}m{v^2}\]
where K is the kinetic energy of the body of mass m moving with speed v.
Complete step by step solution:
When a particle is moving around a circular path then the angular momentum of the particle is the product of the moment of inertia about the axis of rotation and the angular speed.The electron is considered as a point mass.
It is given that the angular speed of an electron in an orbit is J. If the speed of the electron in the orbit is v, then using the formula of angular momentum
\[mvr = J\]
\[\Rightarrow v = \dfrac{J}{{mr}}\]
So, the speed of the electron in the orbit is \[\dfrac{J}{{mr}}\] here r is the radius of the orbit.
Using the kinetic energy formula,
\[K = \dfrac{1}{2}m{v^2} \\ \]
\[\Rightarrow K = \dfrac{1}{2}m{\left( {\dfrac{J}{{mr}}} \right)^2} \\ \]
\[\Rightarrow K = \dfrac{1}{2}m \times \dfrac{{{J^2}}}{{{m^2}{r^2}}} \\ \]
\[\therefore K = \dfrac{{{J^2}}}{{2m{r^2}}}\]
Hence, the kinetic energy of the electron is \[\dfrac{{{J^2}}}{{2m{r^2}}}\].
Therefore, the correct option is A.
Note: Though the speed of the electron in the orbit is very high, we don’t consider the relativistic case to find the momentum or the kinetic energy because the energy of the electron is less than the threshold energy for the relativistic motion.
Formula used:
\[L = mvr\]
where L is the angular momentum of the particle of mass m in a circular orbit of radius r with linear speed v.
\[K = \dfrac{1}{2}m{v^2}\]
where K is the kinetic energy of the body of mass m moving with speed v.
Complete step by step solution:
When a particle is moving around a circular path then the angular momentum of the particle is the product of the moment of inertia about the axis of rotation and the angular speed.The electron is considered as a point mass.
It is given that the angular speed of an electron in an orbit is J. If the speed of the electron in the orbit is v, then using the formula of angular momentum
\[mvr = J\]
\[\Rightarrow v = \dfrac{J}{{mr}}\]
So, the speed of the electron in the orbit is \[\dfrac{J}{{mr}}\] here r is the radius of the orbit.
Using the kinetic energy formula,
\[K = \dfrac{1}{2}m{v^2} \\ \]
\[\Rightarrow K = \dfrac{1}{2}m{\left( {\dfrac{J}{{mr}}} \right)^2} \\ \]
\[\Rightarrow K = \dfrac{1}{2}m \times \dfrac{{{J^2}}}{{{m^2}{r^2}}} \\ \]
\[\therefore K = \dfrac{{{J^2}}}{{2m{r^2}}}\]
Hence, the kinetic energy of the electron is \[\dfrac{{{J^2}}}{{2m{r^2}}}\].
Therefore, the correct option is A.
Note: Though the speed of the electron in the orbit is very high, we don’t consider the relativistic case to find the momentum or the kinetic energy because the energy of the electron is less than the threshold energy for the relativistic motion.
Recently Updated Pages
Differential Equations Explained: Guide for Students

Functional Equations Explained: Key Concepts & Practice

Graphical Methods of Vector Addition Explained Simply

Introduction to Dimensions: Understanding the Basics

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

Wheatstone Bridge Explained: Working, Formula & Uses

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

