
If the angular distance between the stars turns out to be approximately \[1100\] arc seconds, or \[0.30\] degrees. The moon appears to shift \[0.3\] degrees when we observe it from two vantage points \[2360km\] apart, then find the distance of the moon from the surface of the earth. Given the angular diameter of the moon is \[0.5\] degrees.

A) \[450642km\]
B) \[450392km\]
C) \[325684km\]
D) \[480264km\]
Answer
231.3k+ views
Hint: The phenomenon mentioned in the given question is parallax. Parallax is the apparent angular displacement of a celestial body due to its being observed from the surface of the earth instead of the centre of the earth. Parallax also arises due to a change in viewpoint caused by relative motion.
Complete step by step solution:
From the given question, we can say that the shift in the angular distance of the moon when viewed from two different vantage points is \[0.3\] degrees. Let this angular shift be \[\theta \].
Since angular measurements are usually made in radians, we must convert the given angular distance into radians.
\[\begin{align}
& \theta =0.3{}^\circ \\
& \Rightarrow \theta =0.3\times \dfrac{\pi }{180}rad \\
& \Rightarrow \theta =\dfrac{\pi }{600}rad \\
\end{align}\]
Using the properties of circles and arcs, we can say that arc length in a circle is equal to the product of the radius and the angle subtended by the arc.

Since the distance between the moon and the earth is more than the radius of the earth, the distance between the moon and the earth, DA, is roughly equal to DC.
Now for the arc BAC, we can say that arc length will be equal to the product of the radius, DC, and the angle subtended at DC.
Mathematically, we can say that \[d=D\times \theta \] where \[d\] is the arc length.
Substituting the values, we get
\[\begin{align}
& d=D\times \theta \\
& \Rightarrow 2360=D\times \dfrac{\pi }{600}rad \\
& \Rightarrow D=\dfrac{2360\times 600}{\pi }=450642km \\
\end{align}\]
Hence, option (A) is the correct answer.
Note:An alternative method to approach this question is using the definition of parallax. The Parallax formula states that the distance to a star is equal to the distance between the vantage points divided by the parallax angle, where the parallax angle is measured in arcseconds.
Complete step by step solution:
From the given question, we can say that the shift in the angular distance of the moon when viewed from two different vantage points is \[0.3\] degrees. Let this angular shift be \[\theta \].
Since angular measurements are usually made in radians, we must convert the given angular distance into radians.
\[\begin{align}
& \theta =0.3{}^\circ \\
& \Rightarrow \theta =0.3\times \dfrac{\pi }{180}rad \\
& \Rightarrow \theta =\dfrac{\pi }{600}rad \\
\end{align}\]
Using the properties of circles and arcs, we can say that arc length in a circle is equal to the product of the radius and the angle subtended by the arc.

Since the distance between the moon and the earth is more than the radius of the earth, the distance between the moon and the earth, DA, is roughly equal to DC.
Now for the arc BAC, we can say that arc length will be equal to the product of the radius, DC, and the angle subtended at DC.
Mathematically, we can say that \[d=D\times \theta \] where \[d\] is the arc length.
Substituting the values, we get
\[\begin{align}
& d=D\times \theta \\
& \Rightarrow 2360=D\times \dfrac{\pi }{600}rad \\
& \Rightarrow D=\dfrac{2360\times 600}{\pi }=450642km \\
\end{align}\]
Hence, option (A) is the correct answer.
Note:An alternative method to approach this question is using the definition of parallax. The Parallax formula states that the distance to a star is equal to the distance between the vantage points divided by the parallax angle, where the parallax angle is measured in arcseconds.
Recently Updated Pages
Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

