
If \[\sum\limits_{r=1}^{k}{{{\cos }^{-1}}{{\beta }_{r}}=\dfrac{k\pi }{2}}\] for any \[k\ge 1\] and \[A=\sum\limits_{r=1}^{k}{{{\left( {{\beta }_{r}} \right)}^{r}}}\], then \[\underset{x\to A}{\mathop{\lim }}\,\dfrac{{{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}}}{x+{{x}^{2}}}\] is equal to
(a). \[0\]
(b). \[\dfrac{1}{2}\]
(c). \[\dfrac{\pi }{2}\]
(d). \[\dfrac{5}{6}\]
Answer
232.8k+ views
Hint: Use the fact that the value of the function \[{{\cos }^{-1}}x\] is \[\dfrac{\pi }{2}\] for \[x=0\]. Then find the value of \[{{\beta }_{r}}\] and thus \[A\]. Finally evaluate the limit using the L'Hospital Rule.
Complete step-by-step answer:
We have the function \[\sum\limits_{r=1}^{k}{{{\cos }^{-1}}{{\beta }_{r}}=\dfrac{k\pi }{2}}\]. We need to find the value of \[{{\beta }_{r}}\]. We observe that the sum of \[k\] terms is \[\dfrac{k\pi }{2}\]. Thus, the value of \[{{\cos }^{-1}}{{\beta }_{r}}\] is \[\dfrac{\pi }{2}\] for each \[r\]. Hence, for each \[r\], we have \[{{\beta }_{r}}=0\].
Now, we will use this to evaluate the value of the function \[A=\sum\limits_{r=1}^{k}{{{\left( {{\beta }_{r}} \right)}^{r}}}\].
Thus, we have \[A=\sum\limits_{r=1}^{k}{{{\left( {{\beta }_{r}} \right)}^{r}}}={{0}^{1}}+{{0}^{2}}+{{0}^{3}}+{{...0}^{k}}=k\left( 0 \right)=0\].
Hence, we have \[A=0\].
Now, we will evaluate the limit \[\underset{x\to A}{\mathop{\lim }}\,\dfrac{{{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}}}{x+{{x}^{2}}}\]. As \[A=0\], we have \[\underset{x\to A}{\mathop{\lim }}\,\dfrac{{{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}}}{x+{{x}^{2}}}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}}}{x+{{x}^{2}}}\].
We observe that if we apply the limit directly, we get \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}}}{x+{{x}^{2}}}=\dfrac{1-1}{0+0}=\dfrac{0}{0}\].
Hence, we will use L’Hopital Rule to evaluate the given limit of the function which states that if \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{f\left( a \right)}{g\left( a \right)}=\dfrac{0}{\begin{align}
& 0 \\
& \\
\end{align}}\] then we will use \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}=\dfrac{f'\left( a \right)}{g'\left( a \right)}\] to evaluate the limit.
Substituting \[f\left( x \right)={{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}},g\left( x \right)=x+{{x}^{2}}\] in the above equation, we have \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}}}{x+{{x}^{2}}}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( {{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}} \right)}{\dfrac{d}{dx}(x+{{x}^{2}})}\].
We can rewrite the above equation as \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}}}{x+{{x}^{2}}}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( {{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}} \right)}{\dfrac{d}{dx}(x+{{x}^{2}})}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( {{\left( 1+x \right)}^{\dfrac{1}{3}}} \right)-\dfrac{d}{dx}\left( {{\left( 1-2x \right)}^{\dfrac{1}{4}}} \right)}{\dfrac{d}{dx}\left( x \right)+\dfrac{d}{dx}\left( {{x}^{2}} \right)}.....\left( 1 \right)\]. We know that the derivative of the function of the form \[y={{(ax+b)}^{n}}\] is \[\dfrac{dy}{dx}=na{{\left( ax+b \right)}^{n-1}}\].
Substituting \[a=1,b=1,n=\dfrac{1}{3}\] in the above formula, we have \[\dfrac{d}{dx}\left( {{\left( 1+x \right)}^{\dfrac{1}{3}}} \right)=\dfrac{1}{3}{{\left( x+1 \right)}^{\dfrac{-2}{3}}}.....\left( 2 \right)\].
Substituting \[a=-2,b=1,n=\dfrac{1}{4}\] in the above formula, we have \[\dfrac{d}{dx}\left( {{\left( 1-2x \right)}^{\dfrac{1}{4}}} \right)=\dfrac{-1}{2}{{\left( 1-2x \right)}^{\dfrac{-3}{4}}}.....\left( 3 \right)\].
Substituting \[a=1,b=0,n=1\] in the above formula, we have \[\dfrac{d}{dx}\left( x \right)=1.....\left( 4 \right)\].
Substituting \[a=1,b=0,n=2\] in the above formula, we have \[\dfrac{d}{dx}\left( {{x}^{2}} \right)=2x.....\left( 5 \right)\].
Substituting equation \[\left( 2 \right),\left( 3 \right),\left( 4 \right)\]and\[\left( 5 \right)\] in equation \[\left( 1 \right)\], we get \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}}}{x+{{x}^{2}}}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( {{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}} \right)}{\dfrac{d}{dx}(x+{{x}^{2}})}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( {{\left( 1+x \right)}^{\dfrac{1}{3}}} \right)-\dfrac{d}{dx}\left( {{\left( 1-2x \right)}^{\dfrac{1}{4}}} \right)}{\dfrac{d}{dx}\left( x \right)+\dfrac{d}{dx}\left( {{x}^{2}} \right)}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{1}{3}{{\left( 1+x \right)}^{\dfrac{-2}{3}}}-\left( \dfrac{-1}{2} \right){{\left( 1-2x \right)}^{\dfrac{-3}{4}}}}{1+2x}\]
On further solving the equation by applying limits, we have \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{1}{3}{{\left( 1+x \right)}^{\dfrac{-2}{3}}}+\dfrac{1}{2}{{\left( 1-2x \right)}^{\dfrac{-3}{4}}}}{1+2x}=\dfrac{\dfrac{1}{3}+\dfrac{1}{2}}{1+0}=\dfrac{5}{6}\].
Hence, the value of \[\underset{x\to A}{\mathop{\lim }}\,\dfrac{{{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}}}{x+{{x}^{2}}}\]is\[\dfrac{5}{6}\].
Note: We can take other possible values of \[{{\beta }_{r}}\] as well, however, for each value that satisfies the given condition, we will get \[A=0\] and hence, the limit will be the same.
Complete step-by-step answer:
We have the function \[\sum\limits_{r=1}^{k}{{{\cos }^{-1}}{{\beta }_{r}}=\dfrac{k\pi }{2}}\]. We need to find the value of \[{{\beta }_{r}}\]. We observe that the sum of \[k\] terms is \[\dfrac{k\pi }{2}\]. Thus, the value of \[{{\cos }^{-1}}{{\beta }_{r}}\] is \[\dfrac{\pi }{2}\] for each \[r\]. Hence, for each \[r\], we have \[{{\beta }_{r}}=0\].
Now, we will use this to evaluate the value of the function \[A=\sum\limits_{r=1}^{k}{{{\left( {{\beta }_{r}} \right)}^{r}}}\].
Thus, we have \[A=\sum\limits_{r=1}^{k}{{{\left( {{\beta }_{r}} \right)}^{r}}}={{0}^{1}}+{{0}^{2}}+{{0}^{3}}+{{...0}^{k}}=k\left( 0 \right)=0\].
Hence, we have \[A=0\].
Now, we will evaluate the limit \[\underset{x\to A}{\mathop{\lim }}\,\dfrac{{{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}}}{x+{{x}^{2}}}\]. As \[A=0\], we have \[\underset{x\to A}{\mathop{\lim }}\,\dfrac{{{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}}}{x+{{x}^{2}}}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}}}{x+{{x}^{2}}}\].
We observe that if we apply the limit directly, we get \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}}}{x+{{x}^{2}}}=\dfrac{1-1}{0+0}=\dfrac{0}{0}\].
Hence, we will use L’Hopital Rule to evaluate the given limit of the function which states that if \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{f\left( a \right)}{g\left( a \right)}=\dfrac{0}{\begin{align}
& 0 \\
& \\
\end{align}}\] then we will use \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}=\dfrac{f'\left( a \right)}{g'\left( a \right)}\] to evaluate the limit.
Substituting \[f\left( x \right)={{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}},g\left( x \right)=x+{{x}^{2}}\] in the above equation, we have \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}}}{x+{{x}^{2}}}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( {{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}} \right)}{\dfrac{d}{dx}(x+{{x}^{2}})}\].
We can rewrite the above equation as \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}}}{x+{{x}^{2}}}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( {{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}} \right)}{\dfrac{d}{dx}(x+{{x}^{2}})}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( {{\left( 1+x \right)}^{\dfrac{1}{3}}} \right)-\dfrac{d}{dx}\left( {{\left( 1-2x \right)}^{\dfrac{1}{4}}} \right)}{\dfrac{d}{dx}\left( x \right)+\dfrac{d}{dx}\left( {{x}^{2}} \right)}.....\left( 1 \right)\]. We know that the derivative of the function of the form \[y={{(ax+b)}^{n}}\] is \[\dfrac{dy}{dx}=na{{\left( ax+b \right)}^{n-1}}\].
Substituting \[a=1,b=1,n=\dfrac{1}{3}\] in the above formula, we have \[\dfrac{d}{dx}\left( {{\left( 1+x \right)}^{\dfrac{1}{3}}} \right)=\dfrac{1}{3}{{\left( x+1 \right)}^{\dfrac{-2}{3}}}.....\left( 2 \right)\].
Substituting \[a=-2,b=1,n=\dfrac{1}{4}\] in the above formula, we have \[\dfrac{d}{dx}\left( {{\left( 1-2x \right)}^{\dfrac{1}{4}}} \right)=\dfrac{-1}{2}{{\left( 1-2x \right)}^{\dfrac{-3}{4}}}.....\left( 3 \right)\].
Substituting \[a=1,b=0,n=1\] in the above formula, we have \[\dfrac{d}{dx}\left( x \right)=1.....\left( 4 \right)\].
Substituting \[a=1,b=0,n=2\] in the above formula, we have \[\dfrac{d}{dx}\left( {{x}^{2}} \right)=2x.....\left( 5 \right)\].
Substituting equation \[\left( 2 \right),\left( 3 \right),\left( 4 \right)\]and\[\left( 5 \right)\] in equation \[\left( 1 \right)\], we get \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}}}{x+{{x}^{2}}}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( {{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}} \right)}{\dfrac{d}{dx}(x+{{x}^{2}})}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}\left( {{\left( 1+x \right)}^{\dfrac{1}{3}}} \right)-\dfrac{d}{dx}\left( {{\left( 1-2x \right)}^{\dfrac{1}{4}}} \right)}{\dfrac{d}{dx}\left( x \right)+\dfrac{d}{dx}\left( {{x}^{2}} \right)}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{1}{3}{{\left( 1+x \right)}^{\dfrac{-2}{3}}}-\left( \dfrac{-1}{2} \right){{\left( 1-2x \right)}^{\dfrac{-3}{4}}}}{1+2x}\]
On further solving the equation by applying limits, we have \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{1}{3}{{\left( 1+x \right)}^{\dfrac{-2}{3}}}+\dfrac{1}{2}{{\left( 1-2x \right)}^{\dfrac{-3}{4}}}}{1+2x}=\dfrac{\dfrac{1}{3}+\dfrac{1}{2}}{1+0}=\dfrac{5}{6}\].
Hence, the value of \[\underset{x\to A}{\mathop{\lim }}\,\dfrac{{{\left( 1+x \right)}^{\dfrac{1}{3}}}-{{\left( 1-2x \right)}^{\dfrac{1}{4}}}}{x+{{x}^{2}}}\]is\[\dfrac{5}{6}\].
Note: We can take other possible values of \[{{\beta }_{r}}\] as well, however, for each value that satisfies the given condition, we will get \[A=0\] and hence, the limit will be the same.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

