
If sum of two unit vectors is also a unit vector, then magnitude of their difference and angle between the two given unit vectors is:
A) \[\sqrt 3 ,60^\circ \]
B) $\sqrt 3 ,120^\circ $
C) \[\sqrt 2 ,60^\circ \]
D) $\sqrt 2 ,120^\circ $
Answer
216k+ views
Hint: For any vector to be a unit vector, the modulus of the vector or the scalar component of the vector has to be $1$ . Suppose the vector given in the question are $\overrightarrow a $ and $\overrightarrow b $ , then the question implies that;
$\left| {\overrightarrow a } \right| = 1,\left| {\overrightarrow b } \right| = 1$ and $\left| {\overrightarrow a + \overrightarrow b } \right| = 1$
Also according to Parallelogram law of vector addition;
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } $
Where $\overrightarrow a $ and $\overrightarrow b $ are the unit vectors and $\theta $ is the angle between the vectors.
Formulae used:
Parallelogram law of vector addition;
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } $
Parallelogram law of vector subtraction;
\[\left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} - 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } \]
Where $\overrightarrow a $ and $\overrightarrow b $ are the unit vectors and $\theta $ is the angle between the vectors.
Complete step by step solution:
Given that;
$\left| {\overrightarrow a } \right| = 1,\left| {\overrightarrow b } \right| = 1$ and $\left| {\overrightarrow a + \overrightarrow b } \right| = 1$
Also according to vector addition property;
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } $
Where $\overrightarrow a$ and $\overrightarrow b$ are the unit vectors and $\theta $ is the angle between the vectors.
For the first part of the question we have to find the value of $\theta $ such that the addition of the two unit vectors also gives rise to a vector whose modulus or scalar component is $1$. To do this we equation the formula of addition of vectors with the value $1$ .
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } $ $...\left( 1 \right)$
$\left| {\overrightarrow a + \overrightarrow b } \right| = 1$ $...\left( 2 \right)$
Equating $\left( 1 \right)$ and $\left( 2 \right)$
$ \Rightarrow \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } = 1$
$ \Rightarrow \sqrt {{{(1)}^2} + {{(1)}^2} + 2(1)(1)\cos \theta } = 1$ (Squaring both sides)
$ \Rightarrow {(\sqrt {2 + 2\cos \theta } )^2} = {1^2}$
$ \Rightarrow 2(1 + \cos \theta ) = 1$
$ \Rightarrow \cos \theta = - \dfrac{1}{2}$
To find the angle between the two vectors $\overrightarrow a $ and $\overrightarrow b $, we find the principal value of $\theta $ for which $\cos \theta = - \dfrac{1}{2}$ .
$ \Rightarrow \theta = {\cos ^{ - 1}}( - \dfrac{1}{2})$
$ \Rightarrow \theta = 120^\circ $
Therefore the vectors $\overrightarrow a $ and $\overrightarrow b $ have an angle of $120^\circ $ between them.
For the second part of the question, we have to find the magnitude of their difference and for that we use the formula for subtraction of vectors;
\[\left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} - 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } \]
\[ \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} - 2\left( 1 \right)\left( 1 \right)\cos 120^\circ } \]
$ \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} - 2\left( 1 \right)\left( 1 \right)\left( { - \dfrac{1}{2}} \right)} $
$ \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}} $
$ \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt 3 $
Hence, the magnitude of the difference of the vectors is $\sqrt 3$.
Therefore the option that matches the solution is (B) $\sqrt 3 ,120^\circ.$
Note: During addition of subtraction of vectors, there are two approaches that can be used: Parallelogram law of vector addition/subtraction or triangle law of vector addition/subtraction. The approach we choose depends on our level of comfort and the approach that best matches the data given in the question.
$\left| {\overrightarrow a } \right| = 1,\left| {\overrightarrow b } \right| = 1$ and $\left| {\overrightarrow a + \overrightarrow b } \right| = 1$
Also according to Parallelogram law of vector addition;
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } $
Where $\overrightarrow a $ and $\overrightarrow b $ are the unit vectors and $\theta $ is the angle between the vectors.
Formulae used:
Parallelogram law of vector addition;
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } $
Parallelogram law of vector subtraction;
\[\left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} - 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } \]
Where $\overrightarrow a $ and $\overrightarrow b $ are the unit vectors and $\theta $ is the angle between the vectors.
Complete step by step solution:
Given that;
$\left| {\overrightarrow a } \right| = 1,\left| {\overrightarrow b } \right| = 1$ and $\left| {\overrightarrow a + \overrightarrow b } \right| = 1$
Also according to vector addition property;
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } $
Where $\overrightarrow a$ and $\overrightarrow b$ are the unit vectors and $\theta $ is the angle between the vectors.
For the first part of the question we have to find the value of $\theta $ such that the addition of the two unit vectors also gives rise to a vector whose modulus or scalar component is $1$. To do this we equation the formula of addition of vectors with the value $1$ .
$\left| {\overrightarrow a + \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } $ $...\left( 1 \right)$
$\left| {\overrightarrow a + \overrightarrow b } \right| = 1$ $...\left( 2 \right)$
Equating $\left( 1 \right)$ and $\left( 2 \right)$
$ \Rightarrow \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} + 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } = 1$
$ \Rightarrow \sqrt {{{(1)}^2} + {{(1)}^2} + 2(1)(1)\cos \theta } = 1$ (Squaring both sides)
$ \Rightarrow {(\sqrt {2 + 2\cos \theta } )^2} = {1^2}$
$ \Rightarrow 2(1 + \cos \theta ) = 1$
$ \Rightarrow \cos \theta = - \dfrac{1}{2}$
To find the angle between the two vectors $\overrightarrow a $ and $\overrightarrow b $, we find the principal value of $\theta $ for which $\cos \theta = - \dfrac{1}{2}$ .
$ \Rightarrow \theta = {\cos ^{ - 1}}( - \dfrac{1}{2})$
$ \Rightarrow \theta = 120^\circ $
Therefore the vectors $\overrightarrow a $ and $\overrightarrow b $ have an angle of $120^\circ $ between them.
For the second part of the question, we have to find the magnitude of their difference and for that we use the formula for subtraction of vectors;
\[\left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} - 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \theta } \]
\[ \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} - 2\left( 1 \right)\left( 1 \right)\cos 120^\circ } \]
$ \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} - 2\left( 1 \right)\left( 1 \right)\left( { - \dfrac{1}{2}} \right)} $
$ \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}} $
$ \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right| = \sqrt 3 $
Hence, the magnitude of the difference of the vectors is $\sqrt 3$.
Therefore the option that matches the solution is (B) $\sqrt 3 ,120^\circ.$
Note: During addition of subtraction of vectors, there are two approaches that can be used: Parallelogram law of vector addition/subtraction or triangle law of vector addition/subtraction. The approach we choose depends on our level of comfort and the approach that best matches the data given in the question.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

