
If \[\sqrt 3 + i = \left( {a + ib} \right)\left( {c + id} \right)\]. Then what is the value of \[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right)\]?
A. \[\left( {\dfrac{\pi }{3}} \right) + 2n\pi , n \in I\]
B. \[n\pi + \left( {\dfrac{\pi }{6}} \right), n \in I\]
C. \[n\pi - \left( {\dfrac{\pi }{3}} \right), n \in I\]
D. \[2n\pi - \left( {\dfrac{\pi }{3}} \right), n \in I\]
Answer
233.1k+ views
Hint: Simplify the given complex equation by solving the right-hand side. Then equate the real and imaginary parts of the complex number. In the end, use the inverse trigonometric function of the tangent to get the required answer.
Formula used :
\[\tan^{ - 1}x + \tan^{ - 1}y = \tan^{ - 1}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)\]
\[{i^2} = - 1\]
Complete step by step solution:
The given complex equation is \[\sqrt 3 + i = \left( {a + ib} \right)\left( {c + id} \right)\].
Let’s solve the given equation.
\[\sqrt 3 + i = \left( {a + ib} \right)\left( {c + id} \right)\]
\[ \Rightarrow \]\[\sqrt 3 + i = ac + iad + ibc + {i^2}bd\]
Substitute \[{i^2} = - 1\] in the above equation.
\[\sqrt 3 + i = ac + iad + ibc - bd\]
\[ \Rightarrow \]\[\sqrt 3 + i = ac - bd + i\left( {ad + bc} \right)\]
Now equate the real and imaginary parts from both sides. We get
\[ac - bd = \sqrt 3 \] and \[ad + bc = 1\]
Now solve the inverse trigonometric equation \[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right)\].
Apply the inverse trigonometric function of tangent.
\[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right) = \tan^{ - 1}\left( {\dfrac{{\dfrac{b}{a} + \dfrac{d}{c}}}{{1 - \left( {\dfrac{b}{a}} \right)\left( {\dfrac{d}{c}} \right)}}} \right)\]
Simplify the above equation.
\[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right) = \tan^{ - 1}\left( {\dfrac{{\dfrac{{bc + ad}}{{ac}}}}{{\dfrac{{ac - bd}}{{ac}}}}} \right)\]
\[ \Rightarrow \]\[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right) = \tan^{ - 1}\left( {\dfrac{{bc + ad}}{{ac - bd}}} \right)\]
Substitute \[ac - bd = \sqrt 3 \] and \[ad + bc = 1\] in the above equation.
\[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right) = \tan^{ - 1}\left( {\dfrac{1}{{\sqrt 3 }}} \right)\]
\[ \Rightarrow \]\[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right) = \dfrac{\pi }{6}\]
\[ \Rightarrow \]\[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right) = n\pi + \left( {\dfrac{\pi }{6}} \right)\] \[, n \in I\]
Hence the correct option is B.
Note: Students often confused about the inverse trigonometric formula \[\tan^{ - 1}A + \tan^{ - 1}B\] that whether \[\tan^{ - 1}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\] or \[\tan^{ - 1}\left( {\dfrac{{A + B}}{{1 + AB}}} \right)\]. But the correct formula is \[\tan^{ - 1}A + \tan^{ - 1}B = \tan^{ - 1}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\].
Formula used :
\[\tan^{ - 1}x + \tan^{ - 1}y = \tan^{ - 1}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)\]
\[{i^2} = - 1\]
Complete step by step solution:
The given complex equation is \[\sqrt 3 + i = \left( {a + ib} \right)\left( {c + id} \right)\].
Let’s solve the given equation.
\[\sqrt 3 + i = \left( {a + ib} \right)\left( {c + id} \right)\]
\[ \Rightarrow \]\[\sqrt 3 + i = ac + iad + ibc + {i^2}bd\]
Substitute \[{i^2} = - 1\] in the above equation.
\[\sqrt 3 + i = ac + iad + ibc - bd\]
\[ \Rightarrow \]\[\sqrt 3 + i = ac - bd + i\left( {ad + bc} \right)\]
Now equate the real and imaginary parts from both sides. We get
\[ac - bd = \sqrt 3 \] and \[ad + bc = 1\]
Now solve the inverse trigonometric equation \[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right)\].
Apply the inverse trigonometric function of tangent.
\[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right) = \tan^{ - 1}\left( {\dfrac{{\dfrac{b}{a} + \dfrac{d}{c}}}{{1 - \left( {\dfrac{b}{a}} \right)\left( {\dfrac{d}{c}} \right)}}} \right)\]
Simplify the above equation.
\[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right) = \tan^{ - 1}\left( {\dfrac{{\dfrac{{bc + ad}}{{ac}}}}{{\dfrac{{ac - bd}}{{ac}}}}} \right)\]
\[ \Rightarrow \]\[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right) = \tan^{ - 1}\left( {\dfrac{{bc + ad}}{{ac - bd}}} \right)\]
Substitute \[ac - bd = \sqrt 3 \] and \[ad + bc = 1\] in the above equation.
\[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right) = \tan^{ - 1}\left( {\dfrac{1}{{\sqrt 3 }}} \right)\]
\[ \Rightarrow \]\[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right) = \dfrac{\pi }{6}\]
\[ \Rightarrow \]\[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right) = n\pi + \left( {\dfrac{\pi }{6}} \right)\] \[, n \in I\]
Hence the correct option is B.
Note: Students often confused about the inverse trigonometric formula \[\tan^{ - 1}A + \tan^{ - 1}B\] that whether \[\tan^{ - 1}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\] or \[\tan^{ - 1}\left( {\dfrac{{A + B}}{{1 + AB}}} \right)\]. But the correct formula is \[\tan^{ - 1}A + \tan^{ - 1}B = \tan^{ - 1}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\].
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

