
If \[\sqrt 3 + i = \left( {a + ib} \right)\left( {c + id} \right)\]. Then what is the value of \[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right)\]?
A. \[\left( {\dfrac{\pi }{3}} \right) + 2n\pi , n \in I\]
B. \[n\pi + \left( {\dfrac{\pi }{6}} \right), n \in I\]
C. \[n\pi - \left( {\dfrac{\pi }{3}} \right), n \in I\]
D. \[2n\pi - \left( {\dfrac{\pi }{3}} \right), n \in I\]
Answer
217.5k+ views
Hint: Simplify the given complex equation by solving the right-hand side. Then equate the real and imaginary parts of the complex number. In the end, use the inverse trigonometric function of the tangent to get the required answer.
Formula used :
\[\tan^{ - 1}x + \tan^{ - 1}y = \tan^{ - 1}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)\]
\[{i^2} = - 1\]
Complete step by step solution:
The given complex equation is \[\sqrt 3 + i = \left( {a + ib} \right)\left( {c + id} \right)\].
Let’s solve the given equation.
\[\sqrt 3 + i = \left( {a + ib} \right)\left( {c + id} \right)\]
\[ \Rightarrow \]\[\sqrt 3 + i = ac + iad + ibc + {i^2}bd\]
Substitute \[{i^2} = - 1\] in the above equation.
\[\sqrt 3 + i = ac + iad + ibc - bd\]
\[ \Rightarrow \]\[\sqrt 3 + i = ac - bd + i\left( {ad + bc} \right)\]
Now equate the real and imaginary parts from both sides. We get
\[ac - bd = \sqrt 3 \] and \[ad + bc = 1\]
Now solve the inverse trigonometric equation \[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right)\].
Apply the inverse trigonometric function of tangent.
\[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right) = \tan^{ - 1}\left( {\dfrac{{\dfrac{b}{a} + \dfrac{d}{c}}}{{1 - \left( {\dfrac{b}{a}} \right)\left( {\dfrac{d}{c}} \right)}}} \right)\]
Simplify the above equation.
\[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right) = \tan^{ - 1}\left( {\dfrac{{\dfrac{{bc + ad}}{{ac}}}}{{\dfrac{{ac - bd}}{{ac}}}}} \right)\]
\[ \Rightarrow \]\[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right) = \tan^{ - 1}\left( {\dfrac{{bc + ad}}{{ac - bd}}} \right)\]
Substitute \[ac - bd = \sqrt 3 \] and \[ad + bc = 1\] in the above equation.
\[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right) = \tan^{ - 1}\left( {\dfrac{1}{{\sqrt 3 }}} \right)\]
\[ \Rightarrow \]\[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right) = \dfrac{\pi }{6}\]
\[ \Rightarrow \]\[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right) = n\pi + \left( {\dfrac{\pi }{6}} \right)\] \[, n \in I\]
Hence the correct option is B.
Note: Students often confused about the inverse trigonometric formula \[\tan^{ - 1}A + \tan^{ - 1}B\] that whether \[\tan^{ - 1}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\] or \[\tan^{ - 1}\left( {\dfrac{{A + B}}{{1 + AB}}} \right)\]. But the correct formula is \[\tan^{ - 1}A + \tan^{ - 1}B = \tan^{ - 1}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\].
Formula used :
\[\tan^{ - 1}x + \tan^{ - 1}y = \tan^{ - 1}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)\]
\[{i^2} = - 1\]
Complete step by step solution:
The given complex equation is \[\sqrt 3 + i = \left( {a + ib} \right)\left( {c + id} \right)\].
Let’s solve the given equation.
\[\sqrt 3 + i = \left( {a + ib} \right)\left( {c + id} \right)\]
\[ \Rightarrow \]\[\sqrt 3 + i = ac + iad + ibc + {i^2}bd\]
Substitute \[{i^2} = - 1\] in the above equation.
\[\sqrt 3 + i = ac + iad + ibc - bd\]
\[ \Rightarrow \]\[\sqrt 3 + i = ac - bd + i\left( {ad + bc} \right)\]
Now equate the real and imaginary parts from both sides. We get
\[ac - bd = \sqrt 3 \] and \[ad + bc = 1\]
Now solve the inverse trigonometric equation \[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right)\].
Apply the inverse trigonometric function of tangent.
\[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right) = \tan^{ - 1}\left( {\dfrac{{\dfrac{b}{a} + \dfrac{d}{c}}}{{1 - \left( {\dfrac{b}{a}} \right)\left( {\dfrac{d}{c}} \right)}}} \right)\]
Simplify the above equation.
\[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right) = \tan^{ - 1}\left( {\dfrac{{\dfrac{{bc + ad}}{{ac}}}}{{\dfrac{{ac - bd}}{{ac}}}}} \right)\]
\[ \Rightarrow \]\[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right) = \tan^{ - 1}\left( {\dfrac{{bc + ad}}{{ac - bd}}} \right)\]
Substitute \[ac - bd = \sqrt 3 \] and \[ad + bc = 1\] in the above equation.
\[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right) = \tan^{ - 1}\left( {\dfrac{1}{{\sqrt 3 }}} \right)\]
\[ \Rightarrow \]\[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right) = \dfrac{\pi }{6}\]
\[ \Rightarrow \]\[\tan^{ - 1}\left( {\dfrac{b}{a}} \right) + \tan^{ - 1}\left( {\dfrac{d}{c}} \right) = n\pi + \left( {\dfrac{\pi }{6}} \right)\] \[, n \in I\]
Hence the correct option is B.
Note: Students often confused about the inverse trigonometric formula \[\tan^{ - 1}A + \tan^{ - 1}B\] that whether \[\tan^{ - 1}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\] or \[\tan^{ - 1}\left( {\dfrac{{A + B}}{{1 + AB}}} \right)\]. But the correct formula is \[\tan^{ - 1}A + \tan^{ - 1}B = \tan^{ - 1}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\].
Recently Updated Pages
Impulse Momentum Theorem Explained: Formula, Examples & Applications

Inertial and Non-Inertial Frames of Reference Explained

Ionisation Energy and Ionisation Potential Explained

Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Addition of Three Vectors: Methods & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

