
If \[{S_n}\] denotes the sum of first n terms of an A.P. whose first term is a and \[\dfrac{{{S_{nx}}}}{{{S_x}}}\] is independent of x, then \[{S_p} = \]
A) \[{P^3}\]
B) \[{P^2}a\]
C) \[P{a^2}\]
D) \[{a^3}\]
Answer
162.3k+ views
Hint: In this question we have to find the sum of $p$ term. Apply formula of sum of $n$ terms of AP to find ration of sum of $nx$ term to the sum of $x$ term and use given property to find relation between first term and common difference.
Formula used: \[{S_n} = \dfrac{n}{2}(2a + (n - 1)d)\]
Where
\[{S_n}\]Sum of n terms of AP
n is number of terms
a is first term
d is common difference
Complete step by step solution: Given: ratio of sum of $nx$ terms to the sum of $x$ terms are independent of $x$
\[\dfrac{{{S_{nx}}}}{{{S_n}}} = \dfrac{{\dfrac{{nx}}{2}[2a + (nx - 1)d]}}{{\dfrac{x}{2}[2a + (x - 1)d]}}\]
\[\dfrac{{{S_{nx}}}}{{{S_n}}} = \dfrac{{n[(2a - d) + nxd]}}{{(2a - d) + xd}}\]
It is given in the question that \[\dfrac{{{S_{nx}}}}{{{S_x}}}\]ratio is independent of x therefore
\[2a - d = 0\]
\[2a = d\]
Now sum of p terms is given as
\[{S_n} = \dfrac{n}{2}(2a + (n - 1)d)\]
\[{S_p} = \dfrac{p}{2}(2a + (p - 1)d)\]
We know that \[2a = d\]
\[{S_p} = \dfrac{p}{2}(2a + (p - 1)2a)\]
\[{S_p} = {p^2}a\]
Thus, Option (B) is correct.
Note: Here in this question only first term is given and common difference is unknown. So in order to find sum of AP either common difference, first term is known or relation between common difference and first term is known.
In order to find relation between common difference and first term always follow the condition which is given in question. Don’t try any other concept to find it otherwise it will become very complicated.
Sometime students get confused in between AP and GP the only difference in between them is in AP we talk about common difference whereas in GP we talk about common ratio.
Formula used: \[{S_n} = \dfrac{n}{2}(2a + (n - 1)d)\]
Where
\[{S_n}\]Sum of n terms of AP
n is number of terms
a is first term
d is common difference
Complete step by step solution: Given: ratio of sum of $nx$ terms to the sum of $x$ terms are independent of $x$
\[\dfrac{{{S_{nx}}}}{{{S_n}}} = \dfrac{{\dfrac{{nx}}{2}[2a + (nx - 1)d]}}{{\dfrac{x}{2}[2a + (x - 1)d]}}\]
\[\dfrac{{{S_{nx}}}}{{{S_n}}} = \dfrac{{n[(2a - d) + nxd]}}{{(2a - d) + xd}}\]
It is given in the question that \[\dfrac{{{S_{nx}}}}{{{S_x}}}\]ratio is independent of x therefore
\[2a - d = 0\]
\[2a = d\]
Now sum of p terms is given as
\[{S_n} = \dfrac{n}{2}(2a + (n - 1)d)\]
\[{S_p} = \dfrac{p}{2}(2a + (p - 1)d)\]
We know that \[2a = d\]
\[{S_p} = \dfrac{p}{2}(2a + (p - 1)2a)\]
\[{S_p} = {p^2}a\]
Thus, Option (B) is correct.
Note: Here in this question only first term is given and common difference is unknown. So in order to find sum of AP either common difference, first term is known or relation between common difference and first term is known.
In order to find relation between common difference and first term always follow the condition which is given in question. Don’t try any other concept to find it otherwise it will become very complicated.
Sometime students get confused in between AP and GP the only difference in between them is in AP we talk about common difference whereas in GP we talk about common ratio.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
