
If $\sin y = x\sin\left( {a + y} \right)$, and $\dfrac{{dy}}{{dx}} = \dfrac{A}{{\left[ {1 + {x^2} - 2x\cos a} \right]}}$. Then what is the value of $A$?
A. 2
B. $\cos a$
C. $\sin a$
D. None of these
Answer
218.4k+ views
Hint: Simplify the given trigonometric equation by using the trigonometric identity $\sin\left( {A + B} \right)$. Then divide both sides of the equation by $\cos y$ and get the equation of $\tan y$. In the end, differentiate the equation with respect to $x$ and solve it using the quotient rule to get the required answer.
Formula Used:
$\tan x = \dfrac{{\sin x}}{{\cos x}}$
$\sin\left( {A + B} \right) = \sin A\cos B + \cos A\sin B$
$\sin^{2}x + \cos^{2}x = 1$
$\dfrac{d}{{dx}}\tan^{ - 1}x = \dfrac{1}{{1 + {x^2}}} \cdot \dfrac{d}{{dx}}\left( x \right)$
Quotient rule of differentiation: $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{vu' - uv'}}{{{v^2}}}$
Complete step by step solution:
The given trigonometric equation is $\sin y = x\sin\left( {a + y} \right)$ and the differential equation is $\dfrac{{dy}}{{dx}} = \dfrac{A}{{\left[ {1 + {x^2} - 2x\cos a} \right]}}$.
Let’s simplify the trigonometric equation.
$\sin y = x\sin\left( {a + y} \right)$
Apply the identity $\sin\left( {A + B} \right) = \sin A\cos B + \cos A\sin B$.
$\sin y = x\left[ {\sin a \cos y + \cos a \sin y} \right]$
Divide both sides by $\cos y$.
$\dfrac{{\sin y}}{{\cos y}} = \dfrac{x}{{\cos y}}\left[ {\sin a \cos y + \cos a \sin y} \right]$
Simplify the above equation.
$\tan y = x\left[ {\dfrac{{\sin a \cos y}}{{\cos y}} + \dfrac{{\cos a \sin y}}{{\cos y}}} \right]$ [Since $\tan x = \dfrac{{\sin x}}{{\cos x}}$]
$ \Rightarrow $$\tan y = x\left[ {\sin a + \cos a \tan y} \right]$
$ \Rightarrow $$\tan y – x\cos a \tan y = x\sin a$
$ \Rightarrow $$\tan y\left( {1 – x\cos a} \right) = x\sin a$
Divide both sides by $\left( {1 – x\cos a} \right) $.
$\tan y = \dfrac{{x\sin a}}{{\left( {1 – x\cos a} \right)}}$
$ \Rightarrow $$y = \tan^{ - 1}\left( {\dfrac{{x\sin a}}{{1 – x\cos a}}} \right)$
Now differentiate the above equation with respect to $x$.
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\tan^{ - 1}\left( {\dfrac{{x\sin a}}{{1 – x\cos a}}} \right)$
Apply the derivative formula $\dfrac{d}{{dx}}\tan^{ - 1}x = \dfrac{1}{{1 + {x^2}}} \cdot \dfrac{d}{{dx}}\left( x \right)$.
$\dfrac{{dy}}{{dx}} = \dfrac{1}{{1 + {{\left( {\dfrac{{x\sin a}}{{1 - x\cos a}}} \right)}^2}}} \cdot \dfrac{d}{{dx}} \left( {\dfrac{{x\sin a}}{{1 - x\cos a}}} \right)$
Simplify the above equation using the quotient rule of differentiation.
$\dfrac{{dy}}{{dx}} = \dfrac{1}{{1 + \dfrac{{{x^2}\sin^{2}a}}{{{{\left( {1 – x\cos a} \right)}^2}}}}}\left[ {\dfrac{{\left( {1 – x\cos a} \right)\sin a – x\sin a\left( { - \cos a} \right)}}{{{{\left( {1 – x\cos a} \right)}^2}}}} \right]$
$ \Rightarrow $$\dfrac{{dy}}{{dx}} = \dfrac{{{{\left( {1 – x\cos a} \right)}^2}}}{{{{\left( {1 – x\cos a} \right)}^2} + {x^2}\sin^{2}a}}\left[ {\dfrac{{\sin a – x\sin a\cos a + x\sin a\cos a}}{{{{\left( {1 – x\cos a} \right)}^2}}}} \right]$
$ \Rightarrow $$\dfrac{{dy}}{{dx}} = \dfrac{{\sin a}}{{1 + {x^2}\cos^{2}a + 2x\cos a + {x^2}\sin^{2}a}}$
$ \Rightarrow $$\dfrac{{dy}}{{dx}} = \dfrac{{\sin a}}{{1 + {x^2}\left( {\cos^{2}a +\sin^{2}a} \right) + 2x\cos a}}$
$ \Rightarrow $$\dfrac{{dy}}{{dx}} = \dfrac{{\sin a}}{{1 + {x^2} + 2x\cos a}}$ [Since $\sin^{2}x + \cos^{2}x = 1$]
Now equate the above equation with the given differential equation.
We get, $A = \sin a$
Option ‘C’ is correct
Note: Whenever we get an equation that is a mix of $x$ and $y$, we need to rewrite the equation as y in terms of $x$. After that, we can find the derivative of the equation and compare the given derivative value with the calculated one to get the value of $A$.
Formula Used:
$\tan x = \dfrac{{\sin x}}{{\cos x}}$
$\sin\left( {A + B} \right) = \sin A\cos B + \cos A\sin B$
$\sin^{2}x + \cos^{2}x = 1$
$\dfrac{d}{{dx}}\tan^{ - 1}x = \dfrac{1}{{1 + {x^2}}} \cdot \dfrac{d}{{dx}}\left( x \right)$
Quotient rule of differentiation: $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{vu' - uv'}}{{{v^2}}}$
Complete step by step solution:
The given trigonometric equation is $\sin y = x\sin\left( {a + y} \right)$ and the differential equation is $\dfrac{{dy}}{{dx}} = \dfrac{A}{{\left[ {1 + {x^2} - 2x\cos a} \right]}}$.
Let’s simplify the trigonometric equation.
$\sin y = x\sin\left( {a + y} \right)$
Apply the identity $\sin\left( {A + B} \right) = \sin A\cos B + \cos A\sin B$.
$\sin y = x\left[ {\sin a \cos y + \cos a \sin y} \right]$
Divide both sides by $\cos y$.
$\dfrac{{\sin y}}{{\cos y}} = \dfrac{x}{{\cos y}}\left[ {\sin a \cos y + \cos a \sin y} \right]$
Simplify the above equation.
$\tan y = x\left[ {\dfrac{{\sin a \cos y}}{{\cos y}} + \dfrac{{\cos a \sin y}}{{\cos y}}} \right]$ [Since $\tan x = \dfrac{{\sin x}}{{\cos x}}$]
$ \Rightarrow $$\tan y = x\left[ {\sin a + \cos a \tan y} \right]$
$ \Rightarrow $$\tan y – x\cos a \tan y = x\sin a$
$ \Rightarrow $$\tan y\left( {1 – x\cos a} \right) = x\sin a$
Divide both sides by $\left( {1 – x\cos a} \right) $.
$\tan y = \dfrac{{x\sin a}}{{\left( {1 – x\cos a} \right)}}$
$ \Rightarrow $$y = \tan^{ - 1}\left( {\dfrac{{x\sin a}}{{1 – x\cos a}}} \right)$
Now differentiate the above equation with respect to $x$.
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\tan^{ - 1}\left( {\dfrac{{x\sin a}}{{1 – x\cos a}}} \right)$
Apply the derivative formula $\dfrac{d}{{dx}}\tan^{ - 1}x = \dfrac{1}{{1 + {x^2}}} \cdot \dfrac{d}{{dx}}\left( x \right)$.
$\dfrac{{dy}}{{dx}} = \dfrac{1}{{1 + {{\left( {\dfrac{{x\sin a}}{{1 - x\cos a}}} \right)}^2}}} \cdot \dfrac{d}{{dx}} \left( {\dfrac{{x\sin a}}{{1 - x\cos a}}} \right)$
Simplify the above equation using the quotient rule of differentiation.
$\dfrac{{dy}}{{dx}} = \dfrac{1}{{1 + \dfrac{{{x^2}\sin^{2}a}}{{{{\left( {1 – x\cos a} \right)}^2}}}}}\left[ {\dfrac{{\left( {1 – x\cos a} \right)\sin a – x\sin a\left( { - \cos a} \right)}}{{{{\left( {1 – x\cos a} \right)}^2}}}} \right]$
$ \Rightarrow $$\dfrac{{dy}}{{dx}} = \dfrac{{{{\left( {1 – x\cos a} \right)}^2}}}{{{{\left( {1 – x\cos a} \right)}^2} + {x^2}\sin^{2}a}}\left[ {\dfrac{{\sin a – x\sin a\cos a + x\sin a\cos a}}{{{{\left( {1 – x\cos a} \right)}^2}}}} \right]$
$ \Rightarrow $$\dfrac{{dy}}{{dx}} = \dfrac{{\sin a}}{{1 + {x^2}\cos^{2}a + 2x\cos a + {x^2}\sin^{2}a}}$
$ \Rightarrow $$\dfrac{{dy}}{{dx}} = \dfrac{{\sin a}}{{1 + {x^2}\left( {\cos^{2}a +\sin^{2}a} \right) + 2x\cos a}}$
$ \Rightarrow $$\dfrac{{dy}}{{dx}} = \dfrac{{\sin a}}{{1 + {x^2} + 2x\cos a}}$ [Since $\sin^{2}x + \cos^{2}x = 1$]
Now equate the above equation with the given differential equation.
We get, $A = \sin a$
Option ‘C’ is correct
Note: Whenever we get an equation that is a mix of $x$ and $y$, we need to rewrite the equation as y in terms of $x$. After that, we can find the derivative of the equation and compare the given derivative value with the calculated one to get the value of $A$.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

