
If $\sin y = x\sin\left( {a + y} \right)$, and $\dfrac{{dy}}{{dx}} = \dfrac{A}{{\left[ {1 + {x^2} - 2x\cos a} \right]}}$. Then what is the value of $A$?
A. 2
B. $\cos a$
C. $\sin a$
D. None of these
Answer
164.4k+ views
Hint: Simplify the given trigonometric equation by using the trigonometric identity $\sin\left( {A + B} \right)$. Then divide both sides of the equation by $\cos y$ and get the equation of $\tan y$. In the end, differentiate the equation with respect to $x$ and solve it using the quotient rule to get the required answer.
Formula Used:
$\tan x = \dfrac{{\sin x}}{{\cos x}}$
$\sin\left( {A + B} \right) = \sin A\cos B + \cos A\sin B$
$\sin^{2}x + \cos^{2}x = 1$
$\dfrac{d}{{dx}}\tan^{ - 1}x = \dfrac{1}{{1 + {x^2}}} \cdot \dfrac{d}{{dx}}\left( x \right)$
Quotient rule of differentiation: $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{vu' - uv'}}{{{v^2}}}$
Complete step by step solution:
The given trigonometric equation is $\sin y = x\sin\left( {a + y} \right)$ and the differential equation is $\dfrac{{dy}}{{dx}} = \dfrac{A}{{\left[ {1 + {x^2} - 2x\cos a} \right]}}$.
Let’s simplify the trigonometric equation.
$\sin y = x\sin\left( {a + y} \right)$
Apply the identity $\sin\left( {A + B} \right) = \sin A\cos B + \cos A\sin B$.
$\sin y = x\left[ {\sin a \cos y + \cos a \sin y} \right]$
Divide both sides by $\cos y$.
$\dfrac{{\sin y}}{{\cos y}} = \dfrac{x}{{\cos y}}\left[ {\sin a \cos y + \cos a \sin y} \right]$
Simplify the above equation.
$\tan y = x\left[ {\dfrac{{\sin a \cos y}}{{\cos y}} + \dfrac{{\cos a \sin y}}{{\cos y}}} \right]$ [Since $\tan x = \dfrac{{\sin x}}{{\cos x}}$]
$ \Rightarrow $$\tan y = x\left[ {\sin a + \cos a \tan y} \right]$
$ \Rightarrow $$\tan y – x\cos a \tan y = x\sin a$
$ \Rightarrow $$\tan y\left( {1 – x\cos a} \right) = x\sin a$
Divide both sides by $\left( {1 – x\cos a} \right) $.
$\tan y = \dfrac{{x\sin a}}{{\left( {1 – x\cos a} \right)}}$
$ \Rightarrow $$y = \tan^{ - 1}\left( {\dfrac{{x\sin a}}{{1 – x\cos a}}} \right)$
Now differentiate the above equation with respect to $x$.
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\tan^{ - 1}\left( {\dfrac{{x\sin a}}{{1 – x\cos a}}} \right)$
Apply the derivative formula $\dfrac{d}{{dx}}\tan^{ - 1}x = \dfrac{1}{{1 + {x^2}}} \cdot \dfrac{d}{{dx}}\left( x \right)$.
$\dfrac{{dy}}{{dx}} = \dfrac{1}{{1 + {{\left( {\dfrac{{x\sin a}}{{1 - x\cos a}}} \right)}^2}}} \cdot \dfrac{d}{{dx}} \left( {\dfrac{{x\sin a}}{{1 - x\cos a}}} \right)$
Simplify the above equation using the quotient rule of differentiation.
$\dfrac{{dy}}{{dx}} = \dfrac{1}{{1 + \dfrac{{{x^2}\sin^{2}a}}{{{{\left( {1 – x\cos a} \right)}^2}}}}}\left[ {\dfrac{{\left( {1 – x\cos a} \right)\sin a – x\sin a\left( { - \cos a} \right)}}{{{{\left( {1 – x\cos a} \right)}^2}}}} \right]$
$ \Rightarrow $$\dfrac{{dy}}{{dx}} = \dfrac{{{{\left( {1 – x\cos a} \right)}^2}}}{{{{\left( {1 – x\cos a} \right)}^2} + {x^2}\sin^{2}a}}\left[ {\dfrac{{\sin a – x\sin a\cos a + x\sin a\cos a}}{{{{\left( {1 – x\cos a} \right)}^2}}}} \right]$
$ \Rightarrow $$\dfrac{{dy}}{{dx}} = \dfrac{{\sin a}}{{1 + {x^2}\cos^{2}a + 2x\cos a + {x^2}\sin^{2}a}}$
$ \Rightarrow $$\dfrac{{dy}}{{dx}} = \dfrac{{\sin a}}{{1 + {x^2}\left( {\cos^{2}a +\sin^{2}a} \right) + 2x\cos a}}$
$ \Rightarrow $$\dfrac{{dy}}{{dx}} = \dfrac{{\sin a}}{{1 + {x^2} + 2x\cos a}}$ [Since $\sin^{2}x + \cos^{2}x = 1$]
Now equate the above equation with the given differential equation.
We get, $A = \sin a$
Option ‘C’ is correct
Note: Whenever we get an equation that is a mix of $x$ and $y$, we need to rewrite the equation as y in terms of $x$. After that, we can find the derivative of the equation and compare the given derivative value with the calculated one to get the value of $A$.
Formula Used:
$\tan x = \dfrac{{\sin x}}{{\cos x}}$
$\sin\left( {A + B} \right) = \sin A\cos B + \cos A\sin B$
$\sin^{2}x + \cos^{2}x = 1$
$\dfrac{d}{{dx}}\tan^{ - 1}x = \dfrac{1}{{1 + {x^2}}} \cdot \dfrac{d}{{dx}}\left( x \right)$
Quotient rule of differentiation: $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{vu' - uv'}}{{{v^2}}}$
Complete step by step solution:
The given trigonometric equation is $\sin y = x\sin\left( {a + y} \right)$ and the differential equation is $\dfrac{{dy}}{{dx}} = \dfrac{A}{{\left[ {1 + {x^2} - 2x\cos a} \right]}}$.
Let’s simplify the trigonometric equation.
$\sin y = x\sin\left( {a + y} \right)$
Apply the identity $\sin\left( {A + B} \right) = \sin A\cos B + \cos A\sin B$.
$\sin y = x\left[ {\sin a \cos y + \cos a \sin y} \right]$
Divide both sides by $\cos y$.
$\dfrac{{\sin y}}{{\cos y}} = \dfrac{x}{{\cos y}}\left[ {\sin a \cos y + \cos a \sin y} \right]$
Simplify the above equation.
$\tan y = x\left[ {\dfrac{{\sin a \cos y}}{{\cos y}} + \dfrac{{\cos a \sin y}}{{\cos y}}} \right]$ [Since $\tan x = \dfrac{{\sin x}}{{\cos x}}$]
$ \Rightarrow $$\tan y = x\left[ {\sin a + \cos a \tan y} \right]$
$ \Rightarrow $$\tan y – x\cos a \tan y = x\sin a$
$ \Rightarrow $$\tan y\left( {1 – x\cos a} \right) = x\sin a$
Divide both sides by $\left( {1 – x\cos a} \right) $.
$\tan y = \dfrac{{x\sin a}}{{\left( {1 – x\cos a} \right)}}$
$ \Rightarrow $$y = \tan^{ - 1}\left( {\dfrac{{x\sin a}}{{1 – x\cos a}}} \right)$
Now differentiate the above equation with respect to $x$.
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\tan^{ - 1}\left( {\dfrac{{x\sin a}}{{1 – x\cos a}}} \right)$
Apply the derivative formula $\dfrac{d}{{dx}}\tan^{ - 1}x = \dfrac{1}{{1 + {x^2}}} \cdot \dfrac{d}{{dx}}\left( x \right)$.
$\dfrac{{dy}}{{dx}} = \dfrac{1}{{1 + {{\left( {\dfrac{{x\sin a}}{{1 - x\cos a}}} \right)}^2}}} \cdot \dfrac{d}{{dx}} \left( {\dfrac{{x\sin a}}{{1 - x\cos a}}} \right)$
Simplify the above equation using the quotient rule of differentiation.
$\dfrac{{dy}}{{dx}} = \dfrac{1}{{1 + \dfrac{{{x^2}\sin^{2}a}}{{{{\left( {1 – x\cos a} \right)}^2}}}}}\left[ {\dfrac{{\left( {1 – x\cos a} \right)\sin a – x\sin a\left( { - \cos a} \right)}}{{{{\left( {1 – x\cos a} \right)}^2}}}} \right]$
$ \Rightarrow $$\dfrac{{dy}}{{dx}} = \dfrac{{{{\left( {1 – x\cos a} \right)}^2}}}{{{{\left( {1 – x\cos a} \right)}^2} + {x^2}\sin^{2}a}}\left[ {\dfrac{{\sin a – x\sin a\cos a + x\sin a\cos a}}{{{{\left( {1 – x\cos a} \right)}^2}}}} \right]$
$ \Rightarrow $$\dfrac{{dy}}{{dx}} = \dfrac{{\sin a}}{{1 + {x^2}\cos^{2}a + 2x\cos a + {x^2}\sin^{2}a}}$
$ \Rightarrow $$\dfrac{{dy}}{{dx}} = \dfrac{{\sin a}}{{1 + {x^2}\left( {\cos^{2}a +\sin^{2}a} \right) + 2x\cos a}}$
$ \Rightarrow $$\dfrac{{dy}}{{dx}} = \dfrac{{\sin a}}{{1 + {x^2} + 2x\cos a}}$ [Since $\sin^{2}x + \cos^{2}x = 1$]
Now equate the above equation with the given differential equation.
We get, $A = \sin a$
Option ‘C’ is correct
Note: Whenever we get an equation that is a mix of $x$ and $y$, we need to rewrite the equation as y in terms of $x$. After that, we can find the derivative of the equation and compare the given derivative value with the calculated one to get the value of $A$.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
