
If $\sin y = x\sin\left( {a + y} \right)$, and $\dfrac{{dy}}{{dx}} = \dfrac{A}{{\left[ {1 + {x^2} - 2x\cos a} \right]}}$. Then what is the value of $A$?
A. 2
B. $\cos a$
C. $\sin a$
D. None of these
Answer
232.8k+ views
Hint: Simplify the given trigonometric equation by using the trigonometric identity $\sin\left( {A + B} \right)$. Then divide both sides of the equation by $\cos y$ and get the equation of $\tan y$. In the end, differentiate the equation with respect to $x$ and solve it using the quotient rule to get the required answer.
Formula Used:
$\tan x = \dfrac{{\sin x}}{{\cos x}}$
$\sin\left( {A + B} \right) = \sin A\cos B + \cos A\sin B$
$\sin^{2}x + \cos^{2}x = 1$
$\dfrac{d}{{dx}}\tan^{ - 1}x = \dfrac{1}{{1 + {x^2}}} \cdot \dfrac{d}{{dx}}\left( x \right)$
Quotient rule of differentiation: $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{vu' - uv'}}{{{v^2}}}$
Complete step by step solution:
The given trigonometric equation is $\sin y = x\sin\left( {a + y} \right)$ and the differential equation is $\dfrac{{dy}}{{dx}} = \dfrac{A}{{\left[ {1 + {x^2} - 2x\cos a} \right]}}$.
Let’s simplify the trigonometric equation.
$\sin y = x\sin\left( {a + y} \right)$
Apply the identity $\sin\left( {A + B} \right) = \sin A\cos B + \cos A\sin B$.
$\sin y = x\left[ {\sin a \cos y + \cos a \sin y} \right]$
Divide both sides by $\cos y$.
$\dfrac{{\sin y}}{{\cos y}} = \dfrac{x}{{\cos y}}\left[ {\sin a \cos y + \cos a \sin y} \right]$
Simplify the above equation.
$\tan y = x\left[ {\dfrac{{\sin a \cos y}}{{\cos y}} + \dfrac{{\cos a \sin y}}{{\cos y}}} \right]$ [Since $\tan x = \dfrac{{\sin x}}{{\cos x}}$]
$ \Rightarrow $$\tan y = x\left[ {\sin a + \cos a \tan y} \right]$
$ \Rightarrow $$\tan y – x\cos a \tan y = x\sin a$
$ \Rightarrow $$\tan y\left( {1 – x\cos a} \right) = x\sin a$
Divide both sides by $\left( {1 – x\cos a} \right) $.
$\tan y = \dfrac{{x\sin a}}{{\left( {1 – x\cos a} \right)}}$
$ \Rightarrow $$y = \tan^{ - 1}\left( {\dfrac{{x\sin a}}{{1 – x\cos a}}} \right)$
Now differentiate the above equation with respect to $x$.
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\tan^{ - 1}\left( {\dfrac{{x\sin a}}{{1 – x\cos a}}} \right)$
Apply the derivative formula $\dfrac{d}{{dx}}\tan^{ - 1}x = \dfrac{1}{{1 + {x^2}}} \cdot \dfrac{d}{{dx}}\left( x \right)$.
$\dfrac{{dy}}{{dx}} = \dfrac{1}{{1 + {{\left( {\dfrac{{x\sin a}}{{1 - x\cos a}}} \right)}^2}}} \cdot \dfrac{d}{{dx}} \left( {\dfrac{{x\sin a}}{{1 - x\cos a}}} \right)$
Simplify the above equation using the quotient rule of differentiation.
$\dfrac{{dy}}{{dx}} = \dfrac{1}{{1 + \dfrac{{{x^2}\sin^{2}a}}{{{{\left( {1 – x\cos a} \right)}^2}}}}}\left[ {\dfrac{{\left( {1 – x\cos a} \right)\sin a – x\sin a\left( { - \cos a} \right)}}{{{{\left( {1 – x\cos a} \right)}^2}}}} \right]$
$ \Rightarrow $$\dfrac{{dy}}{{dx}} = \dfrac{{{{\left( {1 – x\cos a} \right)}^2}}}{{{{\left( {1 – x\cos a} \right)}^2} + {x^2}\sin^{2}a}}\left[ {\dfrac{{\sin a – x\sin a\cos a + x\sin a\cos a}}{{{{\left( {1 – x\cos a} \right)}^2}}}} \right]$
$ \Rightarrow $$\dfrac{{dy}}{{dx}} = \dfrac{{\sin a}}{{1 + {x^2}\cos^{2}a + 2x\cos a + {x^2}\sin^{2}a}}$
$ \Rightarrow $$\dfrac{{dy}}{{dx}} = \dfrac{{\sin a}}{{1 + {x^2}\left( {\cos^{2}a +\sin^{2}a} \right) + 2x\cos a}}$
$ \Rightarrow $$\dfrac{{dy}}{{dx}} = \dfrac{{\sin a}}{{1 + {x^2} + 2x\cos a}}$ [Since $\sin^{2}x + \cos^{2}x = 1$]
Now equate the above equation with the given differential equation.
We get, $A = \sin a$
Option ‘C’ is correct
Note: Whenever we get an equation that is a mix of $x$ and $y$, we need to rewrite the equation as y in terms of $x$. After that, we can find the derivative of the equation and compare the given derivative value with the calculated one to get the value of $A$.
Formula Used:
$\tan x = \dfrac{{\sin x}}{{\cos x}}$
$\sin\left( {A + B} \right) = \sin A\cos B + \cos A\sin B$
$\sin^{2}x + \cos^{2}x = 1$
$\dfrac{d}{{dx}}\tan^{ - 1}x = \dfrac{1}{{1 + {x^2}}} \cdot \dfrac{d}{{dx}}\left( x \right)$
Quotient rule of differentiation: $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{vu' - uv'}}{{{v^2}}}$
Complete step by step solution:
The given trigonometric equation is $\sin y = x\sin\left( {a + y} \right)$ and the differential equation is $\dfrac{{dy}}{{dx}} = \dfrac{A}{{\left[ {1 + {x^2} - 2x\cos a} \right]}}$.
Let’s simplify the trigonometric equation.
$\sin y = x\sin\left( {a + y} \right)$
Apply the identity $\sin\left( {A + B} \right) = \sin A\cos B + \cos A\sin B$.
$\sin y = x\left[ {\sin a \cos y + \cos a \sin y} \right]$
Divide both sides by $\cos y$.
$\dfrac{{\sin y}}{{\cos y}} = \dfrac{x}{{\cos y}}\left[ {\sin a \cos y + \cos a \sin y} \right]$
Simplify the above equation.
$\tan y = x\left[ {\dfrac{{\sin a \cos y}}{{\cos y}} + \dfrac{{\cos a \sin y}}{{\cos y}}} \right]$ [Since $\tan x = \dfrac{{\sin x}}{{\cos x}}$]
$ \Rightarrow $$\tan y = x\left[ {\sin a + \cos a \tan y} \right]$
$ \Rightarrow $$\tan y – x\cos a \tan y = x\sin a$
$ \Rightarrow $$\tan y\left( {1 – x\cos a} \right) = x\sin a$
Divide both sides by $\left( {1 – x\cos a} \right) $.
$\tan y = \dfrac{{x\sin a}}{{\left( {1 – x\cos a} \right)}}$
$ \Rightarrow $$y = \tan^{ - 1}\left( {\dfrac{{x\sin a}}{{1 – x\cos a}}} \right)$
Now differentiate the above equation with respect to $x$.
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\tan^{ - 1}\left( {\dfrac{{x\sin a}}{{1 – x\cos a}}} \right)$
Apply the derivative formula $\dfrac{d}{{dx}}\tan^{ - 1}x = \dfrac{1}{{1 + {x^2}}} \cdot \dfrac{d}{{dx}}\left( x \right)$.
$\dfrac{{dy}}{{dx}} = \dfrac{1}{{1 + {{\left( {\dfrac{{x\sin a}}{{1 - x\cos a}}} \right)}^2}}} \cdot \dfrac{d}{{dx}} \left( {\dfrac{{x\sin a}}{{1 - x\cos a}}} \right)$
Simplify the above equation using the quotient rule of differentiation.
$\dfrac{{dy}}{{dx}} = \dfrac{1}{{1 + \dfrac{{{x^2}\sin^{2}a}}{{{{\left( {1 – x\cos a} \right)}^2}}}}}\left[ {\dfrac{{\left( {1 – x\cos a} \right)\sin a – x\sin a\left( { - \cos a} \right)}}{{{{\left( {1 – x\cos a} \right)}^2}}}} \right]$
$ \Rightarrow $$\dfrac{{dy}}{{dx}} = \dfrac{{{{\left( {1 – x\cos a} \right)}^2}}}{{{{\left( {1 – x\cos a} \right)}^2} + {x^2}\sin^{2}a}}\left[ {\dfrac{{\sin a – x\sin a\cos a + x\sin a\cos a}}{{{{\left( {1 – x\cos a} \right)}^2}}}} \right]$
$ \Rightarrow $$\dfrac{{dy}}{{dx}} = \dfrac{{\sin a}}{{1 + {x^2}\cos^{2}a + 2x\cos a + {x^2}\sin^{2}a}}$
$ \Rightarrow $$\dfrac{{dy}}{{dx}} = \dfrac{{\sin a}}{{1 + {x^2}\left( {\cos^{2}a +\sin^{2}a} \right) + 2x\cos a}}$
$ \Rightarrow $$\dfrac{{dy}}{{dx}} = \dfrac{{\sin a}}{{1 + {x^2} + 2x\cos a}}$ [Since $\sin^{2}x + \cos^{2}x = 1$]
Now equate the above equation with the given differential equation.
We get, $A = \sin a$
Option ‘C’ is correct
Note: Whenever we get an equation that is a mix of $x$ and $y$, we need to rewrite the equation as y in terms of $x$. After that, we can find the derivative of the equation and compare the given derivative value with the calculated one to get the value of $A$.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

