
If \[\sin^{ - 1}x + \sin^{ - 1}y = \dfrac{\pi }{2}\]. Then what is the value of \[\dfrac{{dy}}{{dx}}\]?
A. \[\dfrac{x}{y}\]
B. \[\dfrac{{ - x}}{y}\]
C. \[\dfrac{y}{x}\]
D. \[\dfrac{{ - y}}{x}\]
Answer
219.3k+ views
Hint: Solve the given trigonometric equation u\sing the inverse trigonometric functions. Then differentiate the function with respect to \[x\] and get the required answer.
Formula used:
\[\sin^{ - 1}x + \cos^{ - 1}x = \dfrac{\pi }{2}\]
\[\cos\left( {si{n^{ - 1}}x} \right) = \sqrt {1 - {x^2}} \]
\[\dfrac{d}{{dx}}\left( {\sqrt x } \right) = \dfrac{1}{{2\sqrt x }}\]
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{\left( {n - 1} \right)}}\]
Complete step by step solution:
The given trigonometric equation is \[\sin^{ - 1}x + \sin^{ - 1}y = \dfrac{\pi }{2}\].
Let’s simplify the given equation.
\[\sin^{ - 1}x = \dfrac{\pi }{2} - \sin^{ - 1}y\]
Now apply the formula \[\sin^{ - 1}x + \cos^{ - 1}x = \dfrac{\pi }{2}\] on the right-hand side.
\[\sin^{ - 1}x = \cos^{ - 1}y\]
Apply the formula \[\cos\left( {\sin^{ - 1}x} \right) = \sqrt {1 - {x^2}} \] on the left-hand side.
\[\cos^{ - 1}\sqrt {1 - {x^2}} = \cos^{ - 1}y\]
\[ \Rightarrow \]\[y = \sqrt {1 - {x^2}} \]
Differentiate the above equation with respect to \[x\].
\[\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\sqrt {1 - {x^2}} } \right)\]
\[ \Rightarrow \]\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{2\sqrt {1 - {x^2}} }}\dfrac{{dy}}{{dx}}\left( {1 - {x^2}} \right)\] [Since \[\dfrac{d}{{dx}}\left( {\sqrt x } \right) = \dfrac{1}{{2\sqrt x }}\]]
\[ \Rightarrow \]\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{2\sqrt {1 - {x^2}} }}\left( { - 2x} \right)\] [ Since \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{\left( {n - 1} \right)}}\]]
\[ \Rightarrow \]\[\dfrac{{dy}}{{dx}} = \dfrac{{ - x}}{{\sqrt {1 - {x^2}} }}\]
Now substitute \[\sqrt {1 - {x^2}} = y\] in the above equation.
\[\dfrac{{dy}}{{dx}} = \dfrac{{ - x}}{y}\]
Hence the correct option is B.
Note: The inverse trigonometric functions are the inverse functions of basic trigonometric functions sine, cosine, tangent, cosecant, secant, and cotangent. It is used to find the angles with any trigonometric ratio.
Formula used:
\[\sin^{ - 1}x + \cos^{ - 1}x = \dfrac{\pi }{2}\]
\[\cos\left( {si{n^{ - 1}}x} \right) = \sqrt {1 - {x^2}} \]
\[\dfrac{d}{{dx}}\left( {\sqrt x } \right) = \dfrac{1}{{2\sqrt x }}\]
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{\left( {n - 1} \right)}}\]
Complete step by step solution:
The given trigonometric equation is \[\sin^{ - 1}x + \sin^{ - 1}y = \dfrac{\pi }{2}\].
Let’s simplify the given equation.
\[\sin^{ - 1}x = \dfrac{\pi }{2} - \sin^{ - 1}y\]
Now apply the formula \[\sin^{ - 1}x + \cos^{ - 1}x = \dfrac{\pi }{2}\] on the right-hand side.
\[\sin^{ - 1}x = \cos^{ - 1}y\]
Apply the formula \[\cos\left( {\sin^{ - 1}x} \right) = \sqrt {1 - {x^2}} \] on the left-hand side.
\[\cos^{ - 1}\sqrt {1 - {x^2}} = \cos^{ - 1}y\]
\[ \Rightarrow \]\[y = \sqrt {1 - {x^2}} \]
Differentiate the above equation with respect to \[x\].
\[\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\sqrt {1 - {x^2}} } \right)\]
\[ \Rightarrow \]\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{2\sqrt {1 - {x^2}} }}\dfrac{{dy}}{{dx}}\left( {1 - {x^2}} \right)\] [Since \[\dfrac{d}{{dx}}\left( {\sqrt x } \right) = \dfrac{1}{{2\sqrt x }}\]]
\[ \Rightarrow \]\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{2\sqrt {1 - {x^2}} }}\left( { - 2x} \right)\] [ Since \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{\left( {n - 1} \right)}}\]]
\[ \Rightarrow \]\[\dfrac{{dy}}{{dx}} = \dfrac{{ - x}}{{\sqrt {1 - {x^2}} }}\]
Now substitute \[\sqrt {1 - {x^2}} = y\] in the above equation.
\[\dfrac{{dy}}{{dx}} = \dfrac{{ - x}}{y}\]
Hence the correct option is B.
Note: The inverse trigonometric functions are the inverse functions of basic trigonometric functions sine, cosine, tangent, cosecant, secant, and cotangent. It is used to find the angles with any trigonometric ratio.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction Explained: Definition, Examples & Science for Students

Analytical Method of Vector Addition Explained Simply

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

