
If \[\sin^{ - 1}x + \sin^{ - 1}y = \dfrac{\pi }{2}\]. Then what is the value of \[\dfrac{{dy}}{{dx}}\]?
A. \[\dfrac{x}{y}\]
B. \[\dfrac{{ - x}}{y}\]
C. \[\dfrac{y}{x}\]
D. \[\dfrac{{ - y}}{x}\]
Answer
218.7k+ views
Hint: Solve the given trigonometric equation u\sing the inverse trigonometric functions. Then differentiate the function with respect to \[x\] and get the required answer.
Formula used:
\[\sin^{ - 1}x + \cos^{ - 1}x = \dfrac{\pi }{2}\]
\[\cos\left( {si{n^{ - 1}}x} \right) = \sqrt {1 - {x^2}} \]
\[\dfrac{d}{{dx}}\left( {\sqrt x } \right) = \dfrac{1}{{2\sqrt x }}\]
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{\left( {n - 1} \right)}}\]
Complete step by step solution:
The given trigonometric equation is \[\sin^{ - 1}x + \sin^{ - 1}y = \dfrac{\pi }{2}\].
Let’s simplify the given equation.
\[\sin^{ - 1}x = \dfrac{\pi }{2} - \sin^{ - 1}y\]
Now apply the formula \[\sin^{ - 1}x + \cos^{ - 1}x = \dfrac{\pi }{2}\] on the right-hand side.
\[\sin^{ - 1}x = \cos^{ - 1}y\]
Apply the formula \[\cos\left( {\sin^{ - 1}x} \right) = \sqrt {1 - {x^2}} \] on the left-hand side.
\[\cos^{ - 1}\sqrt {1 - {x^2}} = \cos^{ - 1}y\]
\[ \Rightarrow \]\[y = \sqrt {1 - {x^2}} \]
Differentiate the above equation with respect to \[x\].
\[\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\sqrt {1 - {x^2}} } \right)\]
\[ \Rightarrow \]\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{2\sqrt {1 - {x^2}} }}\dfrac{{dy}}{{dx}}\left( {1 - {x^2}} \right)\] [Since \[\dfrac{d}{{dx}}\left( {\sqrt x } \right) = \dfrac{1}{{2\sqrt x }}\]]
\[ \Rightarrow \]\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{2\sqrt {1 - {x^2}} }}\left( { - 2x} \right)\] [ Since \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{\left( {n - 1} \right)}}\]]
\[ \Rightarrow \]\[\dfrac{{dy}}{{dx}} = \dfrac{{ - x}}{{\sqrt {1 - {x^2}} }}\]
Now substitute \[\sqrt {1 - {x^2}} = y\] in the above equation.
\[\dfrac{{dy}}{{dx}} = \dfrac{{ - x}}{y}\]
Hence the correct option is B.
Note: The inverse trigonometric functions are the inverse functions of basic trigonometric functions sine, cosine, tangent, cosecant, secant, and cotangent. It is used to find the angles with any trigonometric ratio.
Formula used:
\[\sin^{ - 1}x + \cos^{ - 1}x = \dfrac{\pi }{2}\]
\[\cos\left( {si{n^{ - 1}}x} \right) = \sqrt {1 - {x^2}} \]
\[\dfrac{d}{{dx}}\left( {\sqrt x } \right) = \dfrac{1}{{2\sqrt x }}\]
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{\left( {n - 1} \right)}}\]
Complete step by step solution:
The given trigonometric equation is \[\sin^{ - 1}x + \sin^{ - 1}y = \dfrac{\pi }{2}\].
Let’s simplify the given equation.
\[\sin^{ - 1}x = \dfrac{\pi }{2} - \sin^{ - 1}y\]
Now apply the formula \[\sin^{ - 1}x + \cos^{ - 1}x = \dfrac{\pi }{2}\] on the right-hand side.
\[\sin^{ - 1}x = \cos^{ - 1}y\]
Apply the formula \[\cos\left( {\sin^{ - 1}x} \right) = \sqrt {1 - {x^2}} \] on the left-hand side.
\[\cos^{ - 1}\sqrt {1 - {x^2}} = \cos^{ - 1}y\]
\[ \Rightarrow \]\[y = \sqrt {1 - {x^2}} \]
Differentiate the above equation with respect to \[x\].
\[\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\sqrt {1 - {x^2}} } \right)\]
\[ \Rightarrow \]\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{2\sqrt {1 - {x^2}} }}\dfrac{{dy}}{{dx}}\left( {1 - {x^2}} \right)\] [Since \[\dfrac{d}{{dx}}\left( {\sqrt x } \right) = \dfrac{1}{{2\sqrt x }}\]]
\[ \Rightarrow \]\[\dfrac{{dy}}{{dx}} = \dfrac{1}{{2\sqrt {1 - {x^2}} }}\left( { - 2x} \right)\] [ Since \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{\left( {n - 1} \right)}}\]]
\[ \Rightarrow \]\[\dfrac{{dy}}{{dx}} = \dfrac{{ - x}}{{\sqrt {1 - {x^2}} }}\]
Now substitute \[\sqrt {1 - {x^2}} = y\] in the above equation.
\[\dfrac{{dy}}{{dx}} = \dfrac{{ - x}}{y}\]
Hence the correct option is B.
Note: The inverse trigonometric functions are the inverse functions of basic trigonometric functions sine, cosine, tangent, cosecant, secant, and cotangent. It is used to find the angles with any trigonometric ratio.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

