
If $q$is the acute angle of intersection at a real point of intersection of the circle ${{x}^{2}}+{{y}^{2}}=5$ and the parabola ${{y}^{2}}=4x$ then $\tan q$ is equal to
A. $1$
B. $\sqrt{3}$
C. $3$
D. $\dfrac{1}{\sqrt{3}}$
Answer
233.1k+ views
Hint: To solve this question we will solve both the given equations with the help of substitution method and determine the value of $x$ and $y$and make the points of intersection. We will then differentiate first equation with respect to $x$ at the point of intersection and determine the value of ${{m}_{1}}$. We will differentiate the second equation at the point of intersection and determine the value of ${{m}_{2}}$. We will then substitute the value of ${{m}_{1}}$ and ${{m}_{2}}$in the formula of $\tan A$ and determine its value.
Formula Used:$\tan A=\left| \dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right|$
$m=\dfrac{dy}{dx}$
Complete step by step solution:We are given that $q$is the acute angle of intersection at a real point of intersection of the circle ${{x}^{2}}+{{y}^{2}}=5$ and the parabola ${{y}^{2}}=4x$ and we have to find the value of $\tan q$.
We will substitute the equation ${{y}^{2}}=4x$ in equation ${{x}^{2}}+{{y}^{2}}=5$ and derive the value of $x$ and $y$.
$\begin{align}
& {{x}^{2}}+{{y}^{2}}=5 \\
& {{x}^{2}}+4x=5 \\
& {{x}^{2}}+4x-5=0
\end{align}$
Factorizing the quadratic equation.
$\begin{align}
& {{x}^{2}}+4x-5=0 \\
& x(x+5)-(x+5)=0 \\
& (x+5)(x-1)=0 \\
& x=1,-5
\end{align}$
We will now find the value of $y$by substituting both the values of $x$in equation ${{y}^{2}}=4x$.
$\begin{align}
& {{y}^{2}}=4(1) \\
& {{y}^{2}}=4 \\
& y=\pm 2
\end{align}$ Or $\begin{align}
& {{y}^{2}}=4(-5) \\
& {{y}^{2}}=-20
\end{align}$
We will consider value of $y$ as $y=\pm 2$ . So the points of intersection will be $(1,2)$ and $(1,-2)$.
Now,
We will differentiate the equation ${{x}^{2}}+{{y}^{2}}=5$ with respect to $x$ to find the value of first slope ${{m}_{1}}$ at point $(1,2)$.
$\begin{align}
& {{x}^{2}}+{{y}^{2}}=5 \\
& 2x+2y\dfrac{dy}{dx}=0 \\
& 2y\dfrac{dy}{dx}=-2x \\
& \dfrac{dy}{dx}=-\dfrac{x}{y}
\end{align}$
Hence the value of ${{m}_{1}}$ will be,
$\begin{align}
& {{m}_{1}}={{\left( \dfrac{dy}{dx} \right)}_{\left( 1,2 \right)}} \\
& ={{\left( \dfrac{-x}{y} \right)}_{\left( 1,2 \right)}} \\
& =-\dfrac{1}{2}
\end{align}$
We will now differentiate the equation ${{y}^{2}}=4x$ with respect to $x$ to find the value of second slope ${{m}_{2}}$ at $(1,2)$.
$\begin{align}
& {{y}^{2}}=4x \\
& 2y\dfrac{dy}{dx}=4 \\
& \dfrac{dy}{dx}=\dfrac{4}{2y} \\
& \dfrac{dy}{dx}=\dfrac{2}{y}
\end{align}$
Hence the value of ${{m}_{2}}$ will be,
$\begin{align}
& {{m}_{2}}={{\left( \dfrac{dy}{dx} \right)}_{\left( 1,2 \right)}} \\
& ={{\left( \dfrac{2}{y} \right)}_{\left( 1,2 \right)}} \\
& =\dfrac{2}{2} \\
& =1
\end{align}$
We will now substitute the value of ${{m}_{2}}$ and ${{m}_{1}}$ in the formula of $\tan A$ and determine the value of $\tan q$.
$\begin{align}
& \tan q=\left| \dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right| \\
& =\left| \dfrac{-\dfrac{1}{2}-1}{1+\left( -\dfrac{1}{2} \right)1} \right| \\
& =\left| \dfrac{-\dfrac{3}{2}}{\dfrac{1}{2}} \right| \\
& =3
\end{align}$
The value of $\tan q$ is $3$ where $q$is the acute angle of intersection at a real point of intersection of the circle ${{x}^{2}}+{{y}^{2}}=5$ and the parabola ${{y}^{2}}=4x$.
Option ‘C’ is correct
Note: Slope can be defined as the ratio of change in the values of $y$over the change in the values of $x$.
Formula Used:$\tan A=\left| \dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right|$
$m=\dfrac{dy}{dx}$
Complete step by step solution:We are given that $q$is the acute angle of intersection at a real point of intersection of the circle ${{x}^{2}}+{{y}^{2}}=5$ and the parabola ${{y}^{2}}=4x$ and we have to find the value of $\tan q$.
We will substitute the equation ${{y}^{2}}=4x$ in equation ${{x}^{2}}+{{y}^{2}}=5$ and derive the value of $x$ and $y$.
$\begin{align}
& {{x}^{2}}+{{y}^{2}}=5 \\
& {{x}^{2}}+4x=5 \\
& {{x}^{2}}+4x-5=0
\end{align}$
Factorizing the quadratic equation.
$\begin{align}
& {{x}^{2}}+4x-5=0 \\
& x(x+5)-(x+5)=0 \\
& (x+5)(x-1)=0 \\
& x=1,-5
\end{align}$
We will now find the value of $y$by substituting both the values of $x$in equation ${{y}^{2}}=4x$.
$\begin{align}
& {{y}^{2}}=4(1) \\
& {{y}^{2}}=4 \\
& y=\pm 2
\end{align}$ Or $\begin{align}
& {{y}^{2}}=4(-5) \\
& {{y}^{2}}=-20
\end{align}$
We will consider value of $y$ as $y=\pm 2$ . So the points of intersection will be $(1,2)$ and $(1,-2)$.
Now,
We will differentiate the equation ${{x}^{2}}+{{y}^{2}}=5$ with respect to $x$ to find the value of first slope ${{m}_{1}}$ at point $(1,2)$.
$\begin{align}
& {{x}^{2}}+{{y}^{2}}=5 \\
& 2x+2y\dfrac{dy}{dx}=0 \\
& 2y\dfrac{dy}{dx}=-2x \\
& \dfrac{dy}{dx}=-\dfrac{x}{y}
\end{align}$
Hence the value of ${{m}_{1}}$ will be,
$\begin{align}
& {{m}_{1}}={{\left( \dfrac{dy}{dx} \right)}_{\left( 1,2 \right)}} \\
& ={{\left( \dfrac{-x}{y} \right)}_{\left( 1,2 \right)}} \\
& =-\dfrac{1}{2}
\end{align}$
We will now differentiate the equation ${{y}^{2}}=4x$ with respect to $x$ to find the value of second slope ${{m}_{2}}$ at $(1,2)$.
$\begin{align}
& {{y}^{2}}=4x \\
& 2y\dfrac{dy}{dx}=4 \\
& \dfrac{dy}{dx}=\dfrac{4}{2y} \\
& \dfrac{dy}{dx}=\dfrac{2}{y}
\end{align}$
Hence the value of ${{m}_{2}}$ will be,
$\begin{align}
& {{m}_{2}}={{\left( \dfrac{dy}{dx} \right)}_{\left( 1,2 \right)}} \\
& ={{\left( \dfrac{2}{y} \right)}_{\left( 1,2 \right)}} \\
& =\dfrac{2}{2} \\
& =1
\end{align}$
We will now substitute the value of ${{m}_{2}}$ and ${{m}_{1}}$ in the formula of $\tan A$ and determine the value of $\tan q$.
$\begin{align}
& \tan q=\left| \dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right| \\
& =\left| \dfrac{-\dfrac{1}{2}-1}{1+\left( -\dfrac{1}{2} \right)1} \right| \\
& =\left| \dfrac{-\dfrac{3}{2}}{\dfrac{1}{2}} \right| \\
& =3
\end{align}$
The value of $\tan q$ is $3$ where $q$is the acute angle of intersection at a real point of intersection of the circle ${{x}^{2}}+{{y}^{2}}=5$ and the parabola ${{y}^{2}}=4x$.
Option ‘C’ is correct
Note: Slope can be defined as the ratio of change in the values of $y$over the change in the values of $x$.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

