
If $q$is the acute angle of intersection at a real point of intersection of the circle ${{x}^{2}}+{{y}^{2}}=5$ and the parabola ${{y}^{2}}=4x$ then $\tan q$ is equal to
A. $1$
B. $\sqrt{3}$
C. $3$
D. $\dfrac{1}{\sqrt{3}}$
Answer
163.5k+ views
Hint: To solve this question we will solve both the given equations with the help of substitution method and determine the value of $x$ and $y$and make the points of intersection. We will then differentiate first equation with respect to $x$ at the point of intersection and determine the value of ${{m}_{1}}$. We will differentiate the second equation at the point of intersection and determine the value of ${{m}_{2}}$. We will then substitute the value of ${{m}_{1}}$ and ${{m}_{2}}$in the formula of $\tan A$ and determine its value.
Formula Used:$\tan A=\left| \dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right|$
$m=\dfrac{dy}{dx}$
Complete step by step solution:We are given that $q$is the acute angle of intersection at a real point of intersection of the circle ${{x}^{2}}+{{y}^{2}}=5$ and the parabola ${{y}^{2}}=4x$ and we have to find the value of $\tan q$.
We will substitute the equation ${{y}^{2}}=4x$ in equation ${{x}^{2}}+{{y}^{2}}=5$ and derive the value of $x$ and $y$.
$\begin{align}
& {{x}^{2}}+{{y}^{2}}=5 \\
& {{x}^{2}}+4x=5 \\
& {{x}^{2}}+4x-5=0
\end{align}$
Factorizing the quadratic equation.
$\begin{align}
& {{x}^{2}}+4x-5=0 \\
& x(x+5)-(x+5)=0 \\
& (x+5)(x-1)=0 \\
& x=1,-5
\end{align}$
We will now find the value of $y$by substituting both the values of $x$in equation ${{y}^{2}}=4x$.
$\begin{align}
& {{y}^{2}}=4(1) \\
& {{y}^{2}}=4 \\
& y=\pm 2
\end{align}$ Or $\begin{align}
& {{y}^{2}}=4(-5) \\
& {{y}^{2}}=-20
\end{align}$
We will consider value of $y$ as $y=\pm 2$ . So the points of intersection will be $(1,2)$ and $(1,-2)$.
Now,
We will differentiate the equation ${{x}^{2}}+{{y}^{2}}=5$ with respect to $x$ to find the value of first slope ${{m}_{1}}$ at point $(1,2)$.
$\begin{align}
& {{x}^{2}}+{{y}^{2}}=5 \\
& 2x+2y\dfrac{dy}{dx}=0 \\
& 2y\dfrac{dy}{dx}=-2x \\
& \dfrac{dy}{dx}=-\dfrac{x}{y}
\end{align}$
Hence the value of ${{m}_{1}}$ will be,
$\begin{align}
& {{m}_{1}}={{\left( \dfrac{dy}{dx} \right)}_{\left( 1,2 \right)}} \\
& ={{\left( \dfrac{-x}{y} \right)}_{\left( 1,2 \right)}} \\
& =-\dfrac{1}{2}
\end{align}$
We will now differentiate the equation ${{y}^{2}}=4x$ with respect to $x$ to find the value of second slope ${{m}_{2}}$ at $(1,2)$.
$\begin{align}
& {{y}^{2}}=4x \\
& 2y\dfrac{dy}{dx}=4 \\
& \dfrac{dy}{dx}=\dfrac{4}{2y} \\
& \dfrac{dy}{dx}=\dfrac{2}{y}
\end{align}$
Hence the value of ${{m}_{2}}$ will be,
$\begin{align}
& {{m}_{2}}={{\left( \dfrac{dy}{dx} \right)}_{\left( 1,2 \right)}} \\
& ={{\left( \dfrac{2}{y} \right)}_{\left( 1,2 \right)}} \\
& =\dfrac{2}{2} \\
& =1
\end{align}$
We will now substitute the value of ${{m}_{2}}$ and ${{m}_{1}}$ in the formula of $\tan A$ and determine the value of $\tan q$.
$\begin{align}
& \tan q=\left| \dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right| \\
& =\left| \dfrac{-\dfrac{1}{2}-1}{1+\left( -\dfrac{1}{2} \right)1} \right| \\
& =\left| \dfrac{-\dfrac{3}{2}}{\dfrac{1}{2}} \right| \\
& =3
\end{align}$
The value of $\tan q$ is $3$ where $q$is the acute angle of intersection at a real point of intersection of the circle ${{x}^{2}}+{{y}^{2}}=5$ and the parabola ${{y}^{2}}=4x$.
Option ‘C’ is correct
Note: Slope can be defined as the ratio of change in the values of $y$over the change in the values of $x$.
Formula Used:$\tan A=\left| \dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right|$
$m=\dfrac{dy}{dx}$
Complete step by step solution:We are given that $q$is the acute angle of intersection at a real point of intersection of the circle ${{x}^{2}}+{{y}^{2}}=5$ and the parabola ${{y}^{2}}=4x$ and we have to find the value of $\tan q$.
We will substitute the equation ${{y}^{2}}=4x$ in equation ${{x}^{2}}+{{y}^{2}}=5$ and derive the value of $x$ and $y$.
$\begin{align}
& {{x}^{2}}+{{y}^{2}}=5 \\
& {{x}^{2}}+4x=5 \\
& {{x}^{2}}+4x-5=0
\end{align}$
Factorizing the quadratic equation.
$\begin{align}
& {{x}^{2}}+4x-5=0 \\
& x(x+5)-(x+5)=0 \\
& (x+5)(x-1)=0 \\
& x=1,-5
\end{align}$
We will now find the value of $y$by substituting both the values of $x$in equation ${{y}^{2}}=4x$.
$\begin{align}
& {{y}^{2}}=4(1) \\
& {{y}^{2}}=4 \\
& y=\pm 2
\end{align}$ Or $\begin{align}
& {{y}^{2}}=4(-5) \\
& {{y}^{2}}=-20
\end{align}$
We will consider value of $y$ as $y=\pm 2$ . So the points of intersection will be $(1,2)$ and $(1,-2)$.
Now,
We will differentiate the equation ${{x}^{2}}+{{y}^{2}}=5$ with respect to $x$ to find the value of first slope ${{m}_{1}}$ at point $(1,2)$.
$\begin{align}
& {{x}^{2}}+{{y}^{2}}=5 \\
& 2x+2y\dfrac{dy}{dx}=0 \\
& 2y\dfrac{dy}{dx}=-2x \\
& \dfrac{dy}{dx}=-\dfrac{x}{y}
\end{align}$
Hence the value of ${{m}_{1}}$ will be,
$\begin{align}
& {{m}_{1}}={{\left( \dfrac{dy}{dx} \right)}_{\left( 1,2 \right)}} \\
& ={{\left( \dfrac{-x}{y} \right)}_{\left( 1,2 \right)}} \\
& =-\dfrac{1}{2}
\end{align}$
We will now differentiate the equation ${{y}^{2}}=4x$ with respect to $x$ to find the value of second slope ${{m}_{2}}$ at $(1,2)$.
$\begin{align}
& {{y}^{2}}=4x \\
& 2y\dfrac{dy}{dx}=4 \\
& \dfrac{dy}{dx}=\dfrac{4}{2y} \\
& \dfrac{dy}{dx}=\dfrac{2}{y}
\end{align}$
Hence the value of ${{m}_{2}}$ will be,
$\begin{align}
& {{m}_{2}}={{\left( \dfrac{dy}{dx} \right)}_{\left( 1,2 \right)}} \\
& ={{\left( \dfrac{2}{y} \right)}_{\left( 1,2 \right)}} \\
& =\dfrac{2}{2} \\
& =1
\end{align}$
We will now substitute the value of ${{m}_{2}}$ and ${{m}_{1}}$ in the formula of $\tan A$ and determine the value of $\tan q$.
$\begin{align}
& \tan q=\left| \dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right| \\
& =\left| \dfrac{-\dfrac{1}{2}-1}{1+\left( -\dfrac{1}{2} \right)1} \right| \\
& =\left| \dfrac{-\dfrac{3}{2}}{\dfrac{1}{2}} \right| \\
& =3
\end{align}$
The value of $\tan q$ is $3$ where $q$is the acute angle of intersection at a real point of intersection of the circle ${{x}^{2}}+{{y}^{2}}=5$ and the parabola ${{y}^{2}}=4x$.
Option ‘C’ is correct
Note: Slope can be defined as the ratio of change in the values of $y$over the change in the values of $x$.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
