
If P(A) denotes the power set of A and A is the void set, then what is the number of elements in \[P\left\{ {P\left\{ {P\left\{ {P(A)} \right\}} \right\}} \right\}\] ?
Answer
163.8k+ views
Hint: First obtain the number of power set of A to obtain P(A). Then obtain the number of power set of P(A) to obtain P(P(A)). Similarly proceed further to obtain the required result.
Formula Used:The number of power set of a set A having n elements is \[{2^n}\] .
Complete step by step solution:The given set A is a void set,
Therefore, \[P(A) = {2^0}\]
=1
Now,
\[P\left\{ {P(A)} \right\} = {2^1}\]
=2
So,
\[P\left\{ {P\left\{ {P(A)} \right\}} \right\} = {2^2}\]
=4
Hence,
\[P\left\{ {P\left\{ {P\left\{ {P(A)} \right\}} \right\}} \right\} = {2^4}\]
=16
Therefore, \[P\left\{ {P\left\{ {P\left\{ {P(A)} \right\}} \right\}} \right\} = 16\]
Additional Information:Void set: A void set is a set that contains no element. It is also known as an empty set. It is denoted by {} or $\phi. The number of elements of a void set is 0.
Power set: All subset of a set is known as the power set of a set.
The number of elements of a power set is at least 1.
Remember $\[\phi\] is a subset of all sets.
Note: As it is given that the set A is void, sometime students write the answer as 1. But, t only P(A) is 1, here we need to calculate \[P\left\{ {P\left\{ {P\left\{ {P(A)} \right\}} \right\}} \right\}\]. Calculate the power sets one after one and obtain the required answer.
Formula Used:The number of power set of a set A having n elements is \[{2^n}\] .
Complete step by step solution:The given set A is a void set,
Therefore, \[P(A) = {2^0}\]
=1
Now,
\[P\left\{ {P(A)} \right\} = {2^1}\]
=2
So,
\[P\left\{ {P\left\{ {P(A)} \right\}} \right\} = {2^2}\]
=4
Hence,
\[P\left\{ {P\left\{ {P\left\{ {P(A)} \right\}} \right\}} \right\} = {2^4}\]
=16
Therefore, \[P\left\{ {P\left\{ {P\left\{ {P(A)} \right\}} \right\}} \right\} = 16\]
Additional Information:Void set: A void set is a set that contains no element. It is also known as an empty set. It is denoted by {} or $\phi. The number of elements of a void set is 0.
Power set: All subset of a set is known as the power set of a set.
The number of elements of a power set is at least 1.
Remember $\[\phi\] is a subset of all sets.
Note: As it is given that the set A is void, sometime students write the answer as 1. But, t only P(A) is 1, here we need to calculate \[P\left\{ {P\left\{ {P\left\{ {P(A)} \right\}} \right\}} \right\}\]. Calculate the power sets one after one and obtain the required answer.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
