
If \[P = \int\limits_0^{3\pi } {f\left( {{{\cos }^2}x} \right)dx} \] and \[Q = \int\limits_0^\pi {f\left( {{{\cos }^2}x} \right)dx} \], then which of the following equation is true?
A. \[P - Q = 0\]
B. \[P - 2Q = 0\]
C. \[P - 3Q = 0\]
D. \[P - 5Q = 0\]
Answer
217.2k+ views
Hint: Here, two definite integrals are given. First, simplify the first given integral by checking the integral formula \[\int\limits_0^{2a} {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\] if \[f\left( {2a - x} \right) = f\left( x \right)\]. Then, verify the relation and calculate the required answer.
Formula Used:Integration rule: \[\int\limits_0^{n\pi } {f\left( x \right)} dx = n\int\limits_0^\pi {f\left( x \right)} dx\] if \[f\left( {x + n\pi } \right) = f\left( x \right)\]
Trigonometric identity: \[{\cos ^n}\left( {x + \pi } \right) = {\left( { - \cos x} \right)^n}\]
Complete step by step solution:The given definite integrals are:
\[P = \int\limits_0^{3\pi } {f\left( {{{\cos }^2}x} \right)dx} \] \[.....\left( 1 \right)\]
\[Q = \int\limits_0^\pi {f\left( {{{\cos }^2}x} \right)dx} \] \[.....\left( 2 \right)\]
Let consider,
\[g\left( x \right) = f\left( {{{\cos }^2}x} \right)\]
Substitute \[x = x + \pi \] in the above equation.
We get,
\[g\left( {x + \pi } \right) = f\left( {{{\cos }^2}\left( {x + \pi } \right)} \right)\]
Apply the trigonometric formula \[{\cos ^n}\left( {x + \pi } \right) = {\left( { - \cos x} \right)^n}\].
\[g\left( {x + \pi } \right) = f\left( {{{\left( {\cos x} \right)}^2}} \right)\]
\[ \Rightarrow g\left( {x + \pi } \right) = f\left( {{{\cos }^2}x} \right)\]
\[ \Rightarrow g\left( {x + \pi } \right) = g\left( x \right)\]
Here, \[g\left( x \right)\] is a periodic function with period \[\pi \].
The integration formula for a periodic function is,
\[\int\limits_0^{n\pi } {f\left( x \right)} dx = n\int\limits_0^\pi {f\left( x \right)} dx\]
So, for the equation \[\left( 1 \right)\] we get
\[P = \int\limits_0^{3\pi } {f\left( {{{\cos }^2}x} \right)dx} \]
\[ \Rightarrow P = 3\int\limits_0^\pi {f\left( {{{\cos }^2}x} \right)dx} \]
Substitute equation \[\left( 2 \right)\] in the above equation.
\[ \Rightarrow P = 3Q\]
\[ \Rightarrow P - 3Q = 0\]
Option ‘C’ is correct
Note: Students often get confused with trigonometric identities.
Remember the following trigonometric identities:
\[{\sin ^n}\left( {x + \pi } \right) = {\left( { - \sin x} \right)^n}\]
\[{\cos ^n}\left( {x + \pi } \right) = {\left( { - \cos x} \right)^n}\]
\[{\tan ^n}\left( {x + \pi } \right) = {\tan ^n}x\]
Formula Used:Integration rule: \[\int\limits_0^{n\pi } {f\left( x \right)} dx = n\int\limits_0^\pi {f\left( x \right)} dx\] if \[f\left( {x + n\pi } \right) = f\left( x \right)\]
Trigonometric identity: \[{\cos ^n}\left( {x + \pi } \right) = {\left( { - \cos x} \right)^n}\]
Complete step by step solution:The given definite integrals are:
\[P = \int\limits_0^{3\pi } {f\left( {{{\cos }^2}x} \right)dx} \] \[.....\left( 1 \right)\]
\[Q = \int\limits_0^\pi {f\left( {{{\cos }^2}x} \right)dx} \] \[.....\left( 2 \right)\]
Let consider,
\[g\left( x \right) = f\left( {{{\cos }^2}x} \right)\]
Substitute \[x = x + \pi \] in the above equation.
We get,
\[g\left( {x + \pi } \right) = f\left( {{{\cos }^2}\left( {x + \pi } \right)} \right)\]
Apply the trigonometric formula \[{\cos ^n}\left( {x + \pi } \right) = {\left( { - \cos x} \right)^n}\].
\[g\left( {x + \pi } \right) = f\left( {{{\left( {\cos x} \right)}^2}} \right)\]
\[ \Rightarrow g\left( {x + \pi } \right) = f\left( {{{\cos }^2}x} \right)\]
\[ \Rightarrow g\left( {x + \pi } \right) = g\left( x \right)\]
Here, \[g\left( x \right)\] is a periodic function with period \[\pi \].
The integration formula for a periodic function is,
\[\int\limits_0^{n\pi } {f\left( x \right)} dx = n\int\limits_0^\pi {f\left( x \right)} dx\]
So, for the equation \[\left( 1 \right)\] we get
\[P = \int\limits_0^{3\pi } {f\left( {{{\cos }^2}x} \right)dx} \]
\[ \Rightarrow P = 3\int\limits_0^\pi {f\left( {{{\cos }^2}x} \right)dx} \]
Substitute equation \[\left( 2 \right)\] in the above equation.
\[ \Rightarrow P = 3Q\]
\[ \Rightarrow P - 3Q = 0\]
Option ‘C’ is correct
Note: Students often get confused with trigonometric identities.
Remember the following trigonometric identities:
\[{\sin ^n}\left( {x + \pi } \right) = {\left( { - \sin x} \right)^n}\]
\[{\cos ^n}\left( {x + \pi } \right) = {\left( { - \cos x} \right)^n}\]
\[{\tan ^n}\left( {x + \pi } \right) = {\tan ^n}x\]
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

