
If \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] are three non-coplanar vectors, then \[\dfrac{\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}}{\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b}}+\dfrac{\overrightarrow{b}\cdot \overrightarrow{a}\times \overrightarrow{c}}{\overrightarrow{c}\cdot \overrightarrow{a}\times \overrightarrow{b}}=\]
A. $0$
B. $2$
C. $3$
D. None of these
Answer
232.8k+ views
Hint: In this question, the dot and cross products of vectors are applied to find the required vector expression. The dot product is said to be a scalar product and the cross product is said to be a skew product or vector product. By using appropriate formulae, the required vector equation is calculated.
Formula Used:The dot product of two vectors is
$\overrightarrow{a}\cdot \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos (\overrightarrow{a},\overrightarrow{b})$
The cross-product of two vectors is
$\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\sin (\overrightarrow{a},\overrightarrow{b})\overrightarrow{n}$
Scalar triple product of three vectors:
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{a}\times \overrightarrow{b}\cdot \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{c}\cdot \overrightarrow{a}=\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b} \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]=[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}] \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c}]=-[\overrightarrow{c}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=-[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{b}] \\
\end{align}\]
Important vector identities for solving vector equations are:
\[\overrightarrow{a}\times \overrightarrow{a}=0\]
\[[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{a}]=0\]
Complete step by step solution:It is given that,
\[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] are three non-coplanar vectors, then \[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\ne 0\].
So,
\[\dfrac{\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}}{\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b}}+\dfrac{\overrightarrow{b}\cdot \overrightarrow{a}\times \overrightarrow{c}}{\overrightarrow{c}\cdot \overrightarrow{a}\times \overrightarrow{b}}=\dfrac{[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]}{[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]}+\dfrac{[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c}]}{[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]}\text{ }...(1)\]
Since we have a scalar triple product as
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{a}\times \overrightarrow{b}\cdot \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{c}\cdot \overrightarrow{a}=\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b}\]
We have the vector identity
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c}]\]
On substituting this identity in equation (1), we get
\[\begin{align}
& \dfrac{\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}}{\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b}}+\dfrac{\overrightarrow{b}\cdot \overrightarrow{a}\times \overrightarrow{c}}{\overrightarrow{c}\cdot \overrightarrow{a}\times \overrightarrow{b}}=\dfrac{[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]}{[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]}+\dfrac{[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c}]}{[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]} \\
& \text{ }=\dfrac{[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]}{[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]}-\dfrac{[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]}{[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]} \\
& \text{ }=0 \\
\end{align}\]
Therefore, the value of the given vector equation is 0.
Option ‘A’ is correct
Note:Here we may go wrong with the vector identities and scalar triple product. Here are the simple formulae used for solving the given vector equation. I.e., \[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c}]\] and \[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{a}\times \overrightarrow{b}\cdot \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{c}\cdot \overrightarrow{a}=\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b}\]. By applying appropriate vector products, the given vector equation is evaluated.
Formula Used:The dot product of two vectors is
$\overrightarrow{a}\cdot \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos (\overrightarrow{a},\overrightarrow{b})$
The cross-product of two vectors is
$\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\sin (\overrightarrow{a},\overrightarrow{b})\overrightarrow{n}$
Scalar triple product of three vectors:
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{a}\times \overrightarrow{b}\cdot \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{c}\cdot \overrightarrow{a}=\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b} \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=[\overrightarrow{b}\text{ }\overrightarrow{c}\text{ }\overrightarrow{a}]=[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}] \\
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c}]=-[\overrightarrow{c}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=-[\overrightarrow{a}\text{ }\overrightarrow{c}\text{ }\overrightarrow{b}] \\
\end{align}\]
Important vector identities for solving vector equations are:
\[\overrightarrow{a}\times \overrightarrow{a}=0\]
\[[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{a}]=0\]
Complete step by step solution:It is given that,
\[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] are three non-coplanar vectors, then \[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]\ne 0\].
So,
\[\dfrac{\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}}{\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b}}+\dfrac{\overrightarrow{b}\cdot \overrightarrow{a}\times \overrightarrow{c}}{\overrightarrow{c}\cdot \overrightarrow{a}\times \overrightarrow{b}}=\dfrac{[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]}{[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]}+\dfrac{[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c}]}{[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]}\text{ }...(1)\]
Since we have a scalar triple product as
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{a}\times \overrightarrow{b}\cdot \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{c}\cdot \overrightarrow{a}=\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b}\]
We have the vector identity
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c}]\]
On substituting this identity in equation (1), we get
\[\begin{align}
& \dfrac{\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}}{\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b}}+\dfrac{\overrightarrow{b}\cdot \overrightarrow{a}\times \overrightarrow{c}}{\overrightarrow{c}\cdot \overrightarrow{a}\times \overrightarrow{b}}=\dfrac{[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]}{[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]}+\dfrac{[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c}]}{[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]} \\
& \text{ }=\dfrac{[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]}{[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]}-\dfrac{[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]}{[\overrightarrow{c}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]} \\
& \text{ }=0 \\
\end{align}\]
Therefore, the value of the given vector equation is 0.
Option ‘A’ is correct
Note:Here we may go wrong with the vector identities and scalar triple product. Here are the simple formulae used for solving the given vector equation. I.e., \[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=-[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{c}]\] and \[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\overrightarrow{a}\cdot \overrightarrow{b}\times \overrightarrow{c}=\overrightarrow{a}\times \overrightarrow{b}\cdot \overrightarrow{c}=\overrightarrow{b}\times \overrightarrow{c}\cdot \overrightarrow{a}=\overrightarrow{c}\times \overrightarrow{a}\cdot \overrightarrow{b}\]. By applying appropriate vector products, the given vector equation is evaluated.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

