
If one of the roots of the equation ${{x}^{2}}+ax-b=0$ is 1, then what is ( a – b) equal to?
( a ) – 1
( b ) 1
( c ) 2
( d ) - 2
Answer
233.4k+ views
Hint: In this question, we are given a quadratic equation with one of its roots and we have to find the value of (a – b). First, we compare the equation with the standard form of a quadratic equation and find out the value of a, b and c then we suppose the roots of the quadratic equation and after comparing the roots with the sum of roots and the product of roots, we find the value of ( a – b)
Formula Used: Sum of roots = $\dfrac{-b}{a}$
Product of roots = $\dfrac{c}{a}$
Complete step by step Solution:
Given quadratic equation is ${{x}^{2}}+ax-b=0$………………………. (1)
To find the roots of a quadratic equation we compare the equation (1) with the standard quadratic equation $a{{x}^{2}}+bx+c=0$, we get
a = 1 , b = a and c = -b
Let p and q be the roots of the given quadratic equation.
Then sum of roots ( p + q) = $-\dfrac{b}{a}=-\dfrac{a}{1}$ = - a
And the product of roots (pq) = $\dfrac{c}{a}=-\dfrac{b}{1}$= -b
We are given one of the roots of equation 1.
Let q = 1 then
p+q = -a
And p + 1 = -a
That is a = -p -1
Similarly pq = -b
That is p(1) = -b
Then b = -p
We have to find the value of a – b
That is a – b = ( -p-1) – (-p)
a – b = -p-1+p = - 1
Hence, the value of ( a – b ) = - 1
Therefore, the correct option is (a).
Note: Whenever we solve these types of questions where roots are given, we use the identity of the product of roots which is if x and y are the roots of any quadratic equation the value of xy will be equal to $\dfrac{ constant\, term}{coefficient\, of\, x^2}$ and sum of the roots that is x + y is equal to $\dfrac{ -coefficient\, of \,x}{coefficient\, of\, x^2}$ and by solving it we get the desired answer.
Formula Used: Sum of roots = $\dfrac{-b}{a}$
Product of roots = $\dfrac{c}{a}$
Complete step by step Solution:
Given quadratic equation is ${{x}^{2}}+ax-b=0$………………………. (1)
To find the roots of a quadratic equation we compare the equation (1) with the standard quadratic equation $a{{x}^{2}}+bx+c=0$, we get
a = 1 , b = a and c = -b
Let p and q be the roots of the given quadratic equation.
Then sum of roots ( p + q) = $-\dfrac{b}{a}=-\dfrac{a}{1}$ = - a
And the product of roots (pq) = $\dfrac{c}{a}=-\dfrac{b}{1}$= -b
We are given one of the roots of equation 1.
Let q = 1 then
p+q = -a
And p + 1 = -a
That is a = -p -1
Similarly pq = -b
That is p(1) = -b
Then b = -p
We have to find the value of a – b
That is a – b = ( -p-1) – (-p)
a – b = -p-1+p = - 1
Hence, the value of ( a – b ) = - 1
Therefore, the correct option is (a).
Note: Whenever we solve these types of questions where roots are given, we use the identity of the product of roots which is if x and y are the roots of any quadratic equation the value of xy will be equal to $\dfrac{ constant\, term}{coefficient\, of\, x^2}$ and sum of the roots that is x + y is equal to $\dfrac{ -coefficient\, of \,x}{coefficient\, of\, x^2}$ and by solving it we get the desired answer.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

