
If one of the lines represented by \[a{x^2} + 2hxy + b{y^2} = 0\] is the Y-axis then the equation of the other line is
A) \[ax + 2hy = 0\]
B) \[2hx + by = 0\]
C) \[ax + by = 0\]
D) \[hx + by = 0\]
Answer
162k+ views
Hint: in this question, we have to find equation one of the line included in given equation. In order to find that we just rearrange the given equation and compare it with various standard equations like straight line, parabola and ellipse etc.
Formula Used:In this question we are going use the concept that equation of y axis is\[x = 0\]and trying to find the variables present in given equation and then put it in given equation and we will get required value.
Complete step by step solution:Given: \[a{x^2} + 2hxy + b{y^2} = 0\]
Now we know that equation of y axis is \[x = 0\]
Put this value in given equation.
\[a \times 0 + 2h \times 0y + b{y^2} = 0\]
Now we get
\[b = 0\]
After putting \[x = 0\]in given equation, equation becomes
\[a{x^2} + 2hxy = 0\]
\[x(ax + 2hy) = 0\]
Now required equation is
\[ax + 2hy = 0\]
Option ‘A’ is correct
Note: Here we have to remember that equation of y axis is\[x = 0\]
In this type of questions always follow the instruction given in the question to get required value easily foe example in this question it is given that one of the line in the given equation is y axis.
Don’t try to apply any formula related to any geometrical shape in this type of questions otherwise it becomes very complicated to get the solution.
Some standard equations are given as
Equation of straight lines
\[y = mx + c\]
Equation of parabola
\[{y^2} = 4ax\]
Equation of circle
\[{x^2} + {y^2} + 2gx + 2fy + c = 0\]
Equation of ellipse
\[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\]
Formula Used:In this question we are going use the concept that equation of y axis is\[x = 0\]and trying to find the variables present in given equation and then put it in given equation and we will get required value.
Complete step by step solution:Given: \[a{x^2} + 2hxy + b{y^2} = 0\]
Now we know that equation of y axis is \[x = 0\]
Put this value in given equation.
\[a \times 0 + 2h \times 0y + b{y^2} = 0\]
Now we get
\[b = 0\]
After putting \[x = 0\]in given equation, equation becomes
\[a{x^2} + 2hxy = 0\]
\[x(ax + 2hy) = 0\]
Now required equation is
\[ax + 2hy = 0\]
Option ‘A’ is correct
Note: Here we have to remember that equation of y axis is\[x = 0\]
In this type of questions always follow the instruction given in the question to get required value easily foe example in this question it is given that one of the line in the given equation is y axis.
Don’t try to apply any formula related to any geometrical shape in this type of questions otherwise it becomes very complicated to get the solution.
Some standard equations are given as
Equation of straight lines
\[y = mx + c\]
Equation of parabola
\[{y^2} = 4ax\]
Equation of circle
\[{x^2} + {y^2} + 2gx + 2fy + c = 0\]
Equation of ellipse
\[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\]
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
