
If \[o\left( A \right) = 2 \times 3,o\left( B \right) = 3 \times 2\] and \[o\left( C \right) = 3 \times 3\], then which one of the following is not defined?
1. $CB + A'$
2. $BAC$
3. $C\left( {A + B'} \right)'$
4. $C\left( {A + B'} \right)$
Answer
161.7k+ views
Hint: Here, we are given the order of three matrices, and we have to check from all the options which matric is not defined. The first step is to find and write the order of the transpose of given matrices. Then, start finding the order of each option by breaking it into different parts. Also, use (Order of $AB = $Number of rows of $A \times $Number of columns of $B$) this formula to find the order.
Formula Used:
Order of $AB = $Number of rows of $A \times $Number of columns of $B$
Complete step by step Solution:
Let, $A,B,C$ are the three matrices whose orders are \[o\left( A \right) = 2 \times 3,o\left( B \right) = 3 \times 2\] and \[o\left( C \right) = 3 \times 3\]
It implies that the order of the transpose of following matrices will be
\[o\left( {A'} \right) = 3 \times 2,o\left( {B'} \right) = 2 \times 3,o\left( {C'} \right) = 3 \times 3\]
Now, let’s check for each of the options whether they are defined or not
1. $CB + A'$
Order of $CB = $order of $C \times $order of $B$
$o\left( {CB} \right) = 3 \times 2$
And \[o\left( {A'} \right) = 3 \times 2\]
Therefore, Matrix $CB + A'$ is defined.
2. $BAC$
Order of $BA = $order of $B \times $order of $A$
$o\left( {BA} \right) = 3 \times 3$ and \[o\left( C \right) = 3 \times 3\]
Therefore, Matrix $BAC$ is defined.
3. $C\left( {A + B'} \right)'$
$o\left( {A + B'} \right) = 2 \times 3$
$ \Rightarrow o\left( {A + B'} \right)' = 3 \times 2$ and \[o\left( C \right) = 3 \times 3\]
Therefore, Matrix $C\left( {A + B'} \right)'$ is defined.
4. $C\left( {A + B'} \right)$
$o\left( {A + B'} \right) = 2 \times 3$ and \[o\left( C \right) = 3 \times 3\]
Therefore, Matrix $C\left( {A + B'} \right)$ is not defined.
Hence, the correct option is 4.
Note:The key concept involved in solving this problem is a good knowledge of the matrix and its order. Students must remember that the order of the matrix determines the dimension of the matrix and the number of rows and columns in the matrix. The general representation of matrix order is ${A_{m \times n}}$, where $m$ is the number of rows and $n$ is the number of columns in the given matrix. In addition, the order of matrix multiplication answer ($m \times n$) gives the number of elements in the matrix.
Formula Used:
Order of $AB = $Number of rows of $A \times $Number of columns of $B$
Complete step by step Solution:
Let, $A,B,C$ are the three matrices whose orders are \[o\left( A \right) = 2 \times 3,o\left( B \right) = 3 \times 2\] and \[o\left( C \right) = 3 \times 3\]
It implies that the order of the transpose of following matrices will be
\[o\left( {A'} \right) = 3 \times 2,o\left( {B'} \right) = 2 \times 3,o\left( {C'} \right) = 3 \times 3\]
Now, let’s check for each of the options whether they are defined or not
1. $CB + A'$
Order of $CB = $order of $C \times $order of $B$
$o\left( {CB} \right) = 3 \times 2$
And \[o\left( {A'} \right) = 3 \times 2\]
Therefore, Matrix $CB + A'$ is defined.
2. $BAC$
Order of $BA = $order of $B \times $order of $A$
$o\left( {BA} \right) = 3 \times 3$ and \[o\left( C \right) = 3 \times 3\]
Therefore, Matrix $BAC$ is defined.
3. $C\left( {A + B'} \right)'$
$o\left( {A + B'} \right) = 2 \times 3$
$ \Rightarrow o\left( {A + B'} \right)' = 3 \times 2$ and \[o\left( C \right) = 3 \times 3\]
Therefore, Matrix $C\left( {A + B'} \right)'$ is defined.
4. $C\left( {A + B'} \right)$
$o\left( {A + B'} \right) = 2 \times 3$ and \[o\left( C \right) = 3 \times 3\]
Therefore, Matrix $C\left( {A + B'} \right)$ is not defined.
Hence, the correct option is 4.
Note:The key concept involved in solving this problem is a good knowledge of the matrix and its order. Students must remember that the order of the matrix determines the dimension of the matrix and the number of rows and columns in the matrix. The general representation of matrix order is ${A_{m \times n}}$, where $m$ is the number of rows and $n$ is the number of columns in the given matrix. In addition, the order of matrix multiplication answer ($m \times n$) gives the number of elements in the matrix.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
