
If ${n^{th}}$ term of a series be $3 + n\left( {n - 1} \right)$. Then find the sum of $n$ terms of the series.
A. $\dfrac{{\left( {{n^2} + n} \right)}}{3}$
B. $\dfrac{{\left( {{n^3} + 8n} \right)}}{3}$
C. $\dfrac{{\left( {{n^2} + 8n} \right)}}{5}$
D. $\dfrac{{\left( {{n^2} - 8n} \right)}}{3}$
Answer
232.8k+ views
Hint: Here use the formula of sum of $n$ terms of the series. Substitute the given ${n^{th}}$ term of a series in the formula. Then divide the sum into sub parts. After that, apply the formulas of the sum of natural numbers and sum of squares of natural numbers to find the sum of $n$ terms of the series.
Formula Used:
The sum of natural numbers: $\sum\limits_{i = 1}^n i = \dfrac{{n\left( {n + 1} \right)}}{2}$
The sum of squares of natural numbers: $\sum\limits_{i = 1}^n {{i^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$
The sum of $n$ terms of the series $ = \sum\limits_{n = 1}^n {{a_n}} $
$\sum\limits_{n = 1}^n 1 = n$
Complete step by step solution:
Given: The ${n^{th}}$ term of a series is $3 + n\left( {n - 1} \right)$.
Let consider ${a_n}$ be the ${n^{th}}$ term of a series.
Then,
${a_n} = 3 + n\left( {n - 1} \right)$
$ \Rightarrow {a_n} = 3 + {n^2} - n$
Apply the formula of the sum of $n$ terms of a series.
So, the sum of the $n$ terms in the given series is,
$Sum = \sum\limits_{n = 1}^n {{a_n}} $
Substitute the value of ${a_n}$ in the above formula.
$Sum = \sum\limits_{n = 1}^n {\left( {3 + {n^2} - n} \right)} $
Apply the summation on every term on right-hand side.
$Sum = \sum\limits_{n = 1}^n 3 + \sum\limits_{n = 1}^n {{n^2}} - \sum\limits_{n = 1}^n n $
Now use the formulas of the sum of natural numbers and sum of squares of natural numbers.
$Sum = 3\sum\limits_{n = 1}^n 1 + \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} - \dfrac{{n\left( {n + 1} \right)}}{2}$
$ \Rightarrow Sum = 3n + \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} - \dfrac{{n\left( {n + 1} \right)}}{2}$ $\because \sum\limits_{n = 1}^n 1 = n$
Simplify the above equation.
$Sum = n\left[ {3 + \dfrac{{\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} - \dfrac{{\left( {n + 1} \right)}}{2}} \right]$
Equalize the denominator of the terms present in the brackets.
$Sum = n\left[ {\dfrac{{18}}{6} + \dfrac{{\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} - \dfrac{{3\left( {n + 1} \right)}}{6}} \right]$
$ \Rightarrow Sum = \dfrac{n}{6}\left[ {18 + \left( {n + 1} \right)\left( {2n + 1} \right) - 3\left( {n + 1} \right)} \right]$
Simplify the above equation.
$Sum = \dfrac{n}{6}\left[ {18 + 2{n^2} + 2n + n + 1 - 3n - 3} \right]$
$ \Rightarrow Sum = \dfrac{n}{6}\left[ {2{n^2} + 16} \right]$
$ \Rightarrow Sum = \dfrac{{2n\left( {{n^2} + 8} \right)}}{6}$
$ \Rightarrow Sum = \dfrac{{n\left( {{n^2} + 8} \right)}}{3}$
$ \Rightarrow Sum = \dfrac{{\left( {{n^3} + 8n} \right)}}{3}$
Option ‘B’ is correct
Note: Use the summation method as we did above whenever you are given a series and asked to find the sum of the n terms. It would be simpler to use the formula for the sum of n terms of AP and GP instead of the summation if the given series is an AP or GP.
Formula Used:
The sum of natural numbers: $\sum\limits_{i = 1}^n i = \dfrac{{n\left( {n + 1} \right)}}{2}$
The sum of squares of natural numbers: $\sum\limits_{i = 1}^n {{i^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$
The sum of $n$ terms of the series $ = \sum\limits_{n = 1}^n {{a_n}} $
$\sum\limits_{n = 1}^n 1 = n$
Complete step by step solution:
Given: The ${n^{th}}$ term of a series is $3 + n\left( {n - 1} \right)$.
Let consider ${a_n}$ be the ${n^{th}}$ term of a series.
Then,
${a_n} = 3 + n\left( {n - 1} \right)$
$ \Rightarrow {a_n} = 3 + {n^2} - n$
Apply the formula of the sum of $n$ terms of a series.
So, the sum of the $n$ terms in the given series is,
$Sum = \sum\limits_{n = 1}^n {{a_n}} $
Substitute the value of ${a_n}$ in the above formula.
$Sum = \sum\limits_{n = 1}^n {\left( {3 + {n^2} - n} \right)} $
Apply the summation on every term on right-hand side.
$Sum = \sum\limits_{n = 1}^n 3 + \sum\limits_{n = 1}^n {{n^2}} - \sum\limits_{n = 1}^n n $
Now use the formulas of the sum of natural numbers and sum of squares of natural numbers.
$Sum = 3\sum\limits_{n = 1}^n 1 + \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} - \dfrac{{n\left( {n + 1} \right)}}{2}$
$ \Rightarrow Sum = 3n + \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} - \dfrac{{n\left( {n + 1} \right)}}{2}$ $\because \sum\limits_{n = 1}^n 1 = n$
Simplify the above equation.
$Sum = n\left[ {3 + \dfrac{{\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} - \dfrac{{\left( {n + 1} \right)}}{2}} \right]$
Equalize the denominator of the terms present in the brackets.
$Sum = n\left[ {\dfrac{{18}}{6} + \dfrac{{\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} - \dfrac{{3\left( {n + 1} \right)}}{6}} \right]$
$ \Rightarrow Sum = \dfrac{n}{6}\left[ {18 + \left( {n + 1} \right)\left( {2n + 1} \right) - 3\left( {n + 1} \right)} \right]$
Simplify the above equation.
$Sum = \dfrac{n}{6}\left[ {18 + 2{n^2} + 2n + n + 1 - 3n - 3} \right]$
$ \Rightarrow Sum = \dfrac{n}{6}\left[ {2{n^2} + 16} \right]$
$ \Rightarrow Sum = \dfrac{{2n\left( {{n^2} + 8} \right)}}{6}$
$ \Rightarrow Sum = \dfrac{{n\left( {{n^2} + 8} \right)}}{3}$
$ \Rightarrow Sum = \dfrac{{\left( {{n^3} + 8n} \right)}}{3}$
Option ‘B’ is correct
Note: Use the summation method as we did above whenever you are given a series and asked to find the sum of the n terms. It would be simpler to use the formula for the sum of n terms of AP and GP instead of the summation if the given series is an AP or GP.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

