
If \[m\tan \left( {\theta - 30} \right) = n\tan \left( {\theta + 120} \right)\] , then \[\dfrac{{m + n}}{{m - n}}\] is
A. \[2\cos 2\theta \]
B. \[\cos 2\theta \]
C. \[2\sin 2\theta \]
D. \[\sin 2\theta \]
Answer
164.4k+ views
Hint: In this question, we have to find the value of \[\dfrac{{m + n}}{{m - n}}\]. Firstly, we will rearrange the terms by taking variables on one side and trigonometric functions on another side. Then, apply the componendo and dividendo rule and simplify the expression and further use the trigonometric value of a particular angle to find the value of \[\dfrac{{m + n}}{{m - n}}\].
Formula used: The formula used in this question is shown below;
1. Componendo and dividendo rule that is if \[\dfrac{{a}}{{b}} = \dfrac{{c}}{{d}}\] then \[\dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}}\]
2. \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
3. \[\sin \left( {x + y} \right) = \sin x\cos y + \cos x\sin y\]
4. \[\sin \left( {x - y} \right) = \sin x\cos y - \cos x\sin y\]
5. \[\sin \left( {180 - x} \right) = \sin x\]
6. \[\sin \left( {\theta + 90} \right) = \cos \theta \]
Complete step-by-step solution:
We are given that
\[m\tan \left( {\theta - 30} \right) = n\tan \left( {\theta + 120} \right)\]
Firstly, we will rearrange the given equation by taking variables on left-hand side and trigonometric function on right-hand side, we get
\[\dfrac{m}{n} = \dfrac{{\tan \left( {\theta + 120} \right)}}{{\tan \left( {\theta - 30} \right)}}\]
Let us assume \[\theta + 120 = A\] and \[\theta - 30 = B\].
Now, substitute this in the above equation, we get
\[\dfrac{m}{n} = \dfrac{{\tan A}}{{\tan B}}\] ……(1)
Further, we will apply the componendo and dividendo rule that is if \[\dfrac{{a}}{{b}} = \dfrac{{c}}{{d}}\] then \[\dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}}\].
Here, \[a\] is \[m,b\] is \[n,c\] is \[\tan A\] and \[d\] is \[\tan B\] and substitute the values in equation (1), we get
\[\dfrac{{m + n}}{{m - n}} = \dfrac{{\tan A + \tan B}}{{\tan A - \tan B}}\]
Furthermore, we will apply the formula \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]in the above equation where \[\theta \] is \[A\] and \[B\], we get
\[\dfrac{{m + n}}{{m - n}} = \dfrac{{\dfrac{{\sin A}}{{\cos A}} + \dfrac{{\sin B}}{{\cos B}}}}{{\dfrac{{\sin A}}{{\cos A}} - \dfrac{{\sin B}}{{\cos B}}}}\]
Now, we will simplify the above expression by taking LCM, we get
\[\begin{array}{l}\dfrac{{m + n}}{{m - n}} = \dfrac{{\dfrac{{\sin A\cos B + \cos A\sin B}}{{\cos A\cos B}}}}{{\dfrac{{\sin A\cos B - \sin A\sin B}}{{\cos A\cos B}}}}\\\dfrac{{m + n}}{{m - n}} = \dfrac{{\sin A\cos B + \cos A\sin B}}{{\sin A\cos B - \sin A\sin B}}\end{array}\]
Further, we will use the formula \[\sin \left( {x + y} \right) = \sin x\cos y + \cos x\sin y\] and \[\sin \left( {x - y} \right) = \sin x\cos y - \cos x\sin y\] on the above expression where \[x\] is \[A\] and \[y\] is \[B\], we get
\[\dfrac{{m + n}}{{m - n}} = \dfrac{{\sin \left( {A + B} \right)}}{{\sin \left( {A - B} \right)}}\]
Furthermore, we will resubstitute \[\theta + 120 = A\] and \[\theta - 30 = B\], we get
\[\begin{array}{l}\dfrac{{m + n}}{{m - n}} = \dfrac{{\sin \left( {\theta + 120 + \theta - 30} \right)}}{{\sin \left( {\theta + 120 - \theta + 30} \right)}}\\\dfrac{{m + n}}{{m - n}} = \dfrac{{\sin \left( {2\theta + 90} \right)}}{{\sin \left( {150} \right)}}\end{array}\]
Now, we will rewrite \[\sin \left( {150} \right)\] as \[\sin \left( {180 - 30} \right)\], we get
\[\dfrac{{m + n}}{{m - n}} = \dfrac{{\sin \left( {2\theta + 90} \right)}}{{\sin \left( {180 - 30} \right)}}\]
Further, we will apply the formula \[\sin \left( {180 - x} \right) = \sin x\] where \[x\] is \[30\], we get
\[\dfrac{{m + n}}{{m - n}} = \dfrac{{\sin \left( {2\theta + 90} \right)}}{{\sin \left( {30} \right)}}\]
Furthermore, we will apply the formula \[\sin \left( {\theta + 90} \right) = \cos \theta \], we get
\[\dfrac{{m + n}}{{m - n}} = \dfrac{{\cos 2\theta }}{{\sin \left( {30} \right)}}\]
As we know \[\sin \left( {30} \right) = \dfrac{1}{2}\], we get
\[\begin{array}{l}\dfrac{{m + n}}{{m - n}} = \dfrac{{\cos 2\theta }}{{\dfrac{1}{2}}}\\\dfrac{{m + n}}{{m - n}} = 2\cos 2\theta \end{array}\]
Hence, option A is correct
Note: In this type of question, we should remember the componendo and dividendo rule and know how to use them. We should also remember the addition and subtraction properties of the trigonometry function and also remember what happened when the angle is changed by the right angle.
Formula used: The formula used in this question is shown below;
1. Componendo and dividendo rule that is if \[\dfrac{{a}}{{b}} = \dfrac{{c}}{{d}}\] then \[\dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}}\]
2. \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
3. \[\sin \left( {x + y} \right) = \sin x\cos y + \cos x\sin y\]
4. \[\sin \left( {x - y} \right) = \sin x\cos y - \cos x\sin y\]
5. \[\sin \left( {180 - x} \right) = \sin x\]
6. \[\sin \left( {\theta + 90} \right) = \cos \theta \]
Complete step-by-step solution:
We are given that
\[m\tan \left( {\theta - 30} \right) = n\tan \left( {\theta + 120} \right)\]
Firstly, we will rearrange the given equation by taking variables on left-hand side and trigonometric function on right-hand side, we get
\[\dfrac{m}{n} = \dfrac{{\tan \left( {\theta + 120} \right)}}{{\tan \left( {\theta - 30} \right)}}\]
Let us assume \[\theta + 120 = A\] and \[\theta - 30 = B\].
Now, substitute this in the above equation, we get
\[\dfrac{m}{n} = \dfrac{{\tan A}}{{\tan B}}\] ……(1)
Further, we will apply the componendo and dividendo rule that is if \[\dfrac{{a}}{{b}} = \dfrac{{c}}{{d}}\] then \[\dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}}\].
Here, \[a\] is \[m,b\] is \[n,c\] is \[\tan A\] and \[d\] is \[\tan B\] and substitute the values in equation (1), we get
\[\dfrac{{m + n}}{{m - n}} = \dfrac{{\tan A + \tan B}}{{\tan A - \tan B}}\]
Furthermore, we will apply the formula \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]in the above equation where \[\theta \] is \[A\] and \[B\], we get
\[\dfrac{{m + n}}{{m - n}} = \dfrac{{\dfrac{{\sin A}}{{\cos A}} + \dfrac{{\sin B}}{{\cos B}}}}{{\dfrac{{\sin A}}{{\cos A}} - \dfrac{{\sin B}}{{\cos B}}}}\]
Now, we will simplify the above expression by taking LCM, we get
\[\begin{array}{l}\dfrac{{m + n}}{{m - n}} = \dfrac{{\dfrac{{\sin A\cos B + \cos A\sin B}}{{\cos A\cos B}}}}{{\dfrac{{\sin A\cos B - \sin A\sin B}}{{\cos A\cos B}}}}\\\dfrac{{m + n}}{{m - n}} = \dfrac{{\sin A\cos B + \cos A\sin B}}{{\sin A\cos B - \sin A\sin B}}\end{array}\]
Further, we will use the formula \[\sin \left( {x + y} \right) = \sin x\cos y + \cos x\sin y\] and \[\sin \left( {x - y} \right) = \sin x\cos y - \cos x\sin y\] on the above expression where \[x\] is \[A\] and \[y\] is \[B\], we get
\[\dfrac{{m + n}}{{m - n}} = \dfrac{{\sin \left( {A + B} \right)}}{{\sin \left( {A - B} \right)}}\]
Furthermore, we will resubstitute \[\theta + 120 = A\] and \[\theta - 30 = B\], we get
\[\begin{array}{l}\dfrac{{m + n}}{{m - n}} = \dfrac{{\sin \left( {\theta + 120 + \theta - 30} \right)}}{{\sin \left( {\theta + 120 - \theta + 30} \right)}}\\\dfrac{{m + n}}{{m - n}} = \dfrac{{\sin \left( {2\theta + 90} \right)}}{{\sin \left( {150} \right)}}\end{array}\]
Now, we will rewrite \[\sin \left( {150} \right)\] as \[\sin \left( {180 - 30} \right)\], we get
\[\dfrac{{m + n}}{{m - n}} = \dfrac{{\sin \left( {2\theta + 90} \right)}}{{\sin \left( {180 - 30} \right)}}\]
Further, we will apply the formula \[\sin \left( {180 - x} \right) = \sin x\] where \[x\] is \[30\], we get
\[\dfrac{{m + n}}{{m - n}} = \dfrac{{\sin \left( {2\theta + 90} \right)}}{{\sin \left( {30} \right)}}\]
Furthermore, we will apply the formula \[\sin \left( {\theta + 90} \right) = \cos \theta \], we get
\[\dfrac{{m + n}}{{m - n}} = \dfrac{{\cos 2\theta }}{{\sin \left( {30} \right)}}\]
As we know \[\sin \left( {30} \right) = \dfrac{1}{2}\], we get
\[\begin{array}{l}\dfrac{{m + n}}{{m - n}} = \dfrac{{\cos 2\theta }}{{\dfrac{1}{2}}}\\\dfrac{{m + n}}{{m - n}} = 2\cos 2\theta \end{array}\]
Hence, option A is correct
Note: In this type of question, we should remember the componendo and dividendo rule and know how to use them. We should also remember the addition and subtraction properties of the trigonometry function and also remember what happened when the angle is changed by the right angle.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
