
If $L{{x}^{2}}-10xy+12{{y}^{2}}+5x-16y-3=0$ represents a pair of straight lines, then $L$ is
A. $1$
B. $2$
C. $3$
D. $-1$
Answer
162.3k+ views
Hint: In this question, we need to find the value of $L$in the equation that represents two straight lines. So, we can apply the formula $\Delta =0$ to find the required value.
Formula Used:The equation of the pair of straight lines is written as
$H\equiv a{{x}^{2}}+2hxy+b{{y}^{2}}=0$
This is called a homogenous equation of the second degree in $x$ and $y$
And
$S\equiv a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$
This is called a general equation of the second degree in $x$ and $y$.
If ${{h}^{2}}If ${{h}^{2}}=ab$, then $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$ represents coincident lines.
If ${{h}^{2}}>ab$, then $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$ represents two real and different lines that pass through the origin.
Thus, the equation $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$ represents two lines. They are:
$ax+hy\pm y\sqrt{{{h}^{2}}-ab}=0$
If $S\equiv a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$ represents a pair of lines, then
i) $abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0$ and
ii) ${{h}^{2}}\ge ab,{{g}^{2}}\ge ac,{{f}^{2}}\ge bc$
Complete step by step solution:Given equation is
$L{{x}^{2}}-10xy+12{{y}^{2}}+5x-16y-3=0\text{ }...(1)$
But we have the general equation of pair lines as
$S\equiv a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0\text{ }...(2)$
Comparing (1) and (2), we get
$a=L;h=-5;b=12;g=\dfrac{5}{2};f=-8;c=-3$
If the given equation (1) represents two pairs of lines, then
$\Delta =abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0\text{ }...(3)$
On substituting the above values in (3), we get
$\begin{align}
& abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0 \\
& \Rightarrow (L)(12)(-3)+2(-8)(\dfrac{5}{2})(-5)-L{{\left( -8 \right)}^{2}}-(12){{\left( \dfrac{5}{2} \right)}^{2}}-(-3){{\left( -5 \right)}^{2}}=0 \\
& \Rightarrow -36L+200-64L-75+75=0 \\
& \Rightarrow -100L=-200 \\
& \therefore L=2 \\
\end{align}$
Thus, the value is $L=2$.
Option ‘B’ is correct
Note: Here, the given equation represents pair of lines. So, the given equation should satisfy the condition we have $abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0$. Then, by substituting the values into this condition, we get the required values. In this problem, we need to find the coefficient of ${{x}^{2}}$ in the given equation. So, the we applied above formula. On simplifying, we get the required value.
Formula Used:The equation of the pair of straight lines is written as
$H\equiv a{{x}^{2}}+2hxy+b{{y}^{2}}=0$
This is called a homogenous equation of the second degree in $x$ and $y$
And
$S\equiv a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$
This is called a general equation of the second degree in $x$ and $y$.
If ${{h}^{2}}
If ${{h}^{2}}>ab$, then $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$ represents two real and different lines that pass through the origin.
Thus, the equation $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$ represents two lines. They are:
$ax+hy\pm y\sqrt{{{h}^{2}}-ab}=0$
If $S\equiv a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$ represents a pair of lines, then
i) $abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0$ and
ii) ${{h}^{2}}\ge ab,{{g}^{2}}\ge ac,{{f}^{2}}\ge bc$
Complete step by step solution:Given equation is
$L{{x}^{2}}-10xy+12{{y}^{2}}+5x-16y-3=0\text{ }...(1)$
But we have the general equation of pair lines as
$S\equiv a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0\text{ }...(2)$
Comparing (1) and (2), we get
$a=L;h=-5;b=12;g=\dfrac{5}{2};f=-8;c=-3$
If the given equation (1) represents two pairs of lines, then
$\Delta =abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0\text{ }...(3)$
On substituting the above values in (3), we get
$\begin{align}
& abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0 \\
& \Rightarrow (L)(12)(-3)+2(-8)(\dfrac{5}{2})(-5)-L{{\left( -8 \right)}^{2}}-(12){{\left( \dfrac{5}{2} \right)}^{2}}-(-3){{\left( -5 \right)}^{2}}=0 \\
& \Rightarrow -36L+200-64L-75+75=0 \\
& \Rightarrow -100L=-200 \\
& \therefore L=2 \\
\end{align}$
Thus, the value is $L=2$.
Option ‘B’ is correct
Note: Here, the given equation represents pair of lines. So, the given equation should satisfy the condition we have $abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0$. Then, by substituting the values into this condition, we get the required values. In this problem, we need to find the coefficient of ${{x}^{2}}$ in the given equation. So, the we applied above formula. On simplifying, we get the required value.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025

1 Billion in Rupees
