
If $\log \left( {1 + x} \right) + \log \left( {x - 1} \right) = \log 8$ , then $x$ is equal to
$
{\text{A}}{\text{. 2}} \\
{\text{B}}{\text{. 3}} \\
{\text{C}}{\text{. - 3}} \\
{\text{D}}{\text{. - 2}} \\
$
Answer
232.8k+ views
Hint: In this question we have to find the value of $x$, so the key concept is to apply the basic logarithmic identities in the given equation $\log \left( {1 + x} \right) + \log \left( {x - 1} \right) = \log 8$ to get the correct value of $x$.
Complete step-by-step answer:
We have been given that $\log \left( {1 + x} \right) + \log \left( {x - 1} \right) = \log 8$ …………. (1)
We know that, if $a > 0,b > 0$ then we have,
$ \Rightarrow \log a + \log b = \log ab$
So, equation (1) can also be written as
$
\Rightarrow \log (1 + x) + \log (x - 1) = \log 8 \\
\Rightarrow \log \left\{ {\left( {1 + x} \right)(x - 1)} \right\} = \log 8 \\
$ ………… (2)
Now we can write $\left( {1 + x} \right)\left( {x - 1} \right) = {x^2} - {1^2} = {x^2} - 1$
So, equation (2) will become
$ \Rightarrow \log ({x^2} - 1) = \log 8$ ………….. (3)
We also know that if $\log a = \log b$ then we have,
$ \Rightarrow a = b$ for all $a > 0,b > 0$
So, equation (3) will become
$
\Rightarrow \log ({x^2} - 1) = \log 8 \\
\Rightarrow {x^2} - 1 = 8 \\
\Rightarrow {x^2} = 9 \\
\Rightarrow x = \pm \sqrt 9 \\
\Rightarrow x = \pm 3 \\
\Rightarrow x = + 3, - 3 \\
$
Here we get the two values of $x = + 3, - 3$
And we have the equation (1) is $\log \left( {1 + x} \right) + \log \left( {x - 1} \right) = \log 8$
So, for $x = - 3$ equation (1) is not defined because ‘$\log $’ is only defined for positive real numbers.
But for $x = + 3$ equation (1) is defined.
Hence option B is the correct answer.
Note: Whenever we face such types of problems the key point is that to simplify the problems by using basic logarithmic identities. So we have always remembered the basic logarithmic identities. After getting the solutions the most important step is rechecking whether the given equation will define or not for our founded solutions. The solution for which the given equation is defined is our right answer.
Complete step-by-step answer:
We have been given that $\log \left( {1 + x} \right) + \log \left( {x - 1} \right) = \log 8$ …………. (1)
We know that, if $a > 0,b > 0$ then we have,
$ \Rightarrow \log a + \log b = \log ab$
So, equation (1) can also be written as
$
\Rightarrow \log (1 + x) + \log (x - 1) = \log 8 \\
\Rightarrow \log \left\{ {\left( {1 + x} \right)(x - 1)} \right\} = \log 8 \\
$ ………… (2)
Now we can write $\left( {1 + x} \right)\left( {x - 1} \right) = {x^2} - {1^2} = {x^2} - 1$
So, equation (2) will become
$ \Rightarrow \log ({x^2} - 1) = \log 8$ ………….. (3)
We also know that if $\log a = \log b$ then we have,
$ \Rightarrow a = b$ for all $a > 0,b > 0$
So, equation (3) will become
$
\Rightarrow \log ({x^2} - 1) = \log 8 \\
\Rightarrow {x^2} - 1 = 8 \\
\Rightarrow {x^2} = 9 \\
\Rightarrow x = \pm \sqrt 9 \\
\Rightarrow x = \pm 3 \\
\Rightarrow x = + 3, - 3 \\
$
Here we get the two values of $x = + 3, - 3$
And we have the equation (1) is $\log \left( {1 + x} \right) + \log \left( {x - 1} \right) = \log 8$
So, for $x = - 3$ equation (1) is not defined because ‘$\log $’ is only defined for positive real numbers.
But for $x = + 3$ equation (1) is defined.
Hence option B is the correct answer.
Note: Whenever we face such types of problems the key point is that to simplify the problems by using basic logarithmic identities. So we have always remembered the basic logarithmic identities. After getting the solutions the most important step is rechecking whether the given equation will define or not for our founded solutions. The solution for which the given equation is defined is our right answer.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

