
If ${\log _3}2$, ${\log _3}\left( {{2^x} - 5} \right)$, ${\log _3}\left( {{2^x} - \dfrac{7}{2}} \right)$ are in AP. Then find the value of $x$.
A. 2
B. 3
C. 4
D. 2,3
Answer
216k+ views
Hint: Given that ${\log _3}2$, ${\log _3}\left( {{2^x} - 5} \right)$, ${\log _3}\left( {{2^x} - \dfrac{7}{2}} \right)$ are AP, we will apply the condition of the AP terms. Then solve the equation for x. After that put the solutions of x in the given terms to check which solution satisfies the terms.
Formula Used:
If $a,b,c$ are in Ap then $2b = a + c$.
$n\log m = \log {m^n}$
$\log a + \log b = \log ab$
${\log _a}b = {\log _a}c \Rightarrow b = c$
${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
${a^x} = {a^y} \Rightarrow x = y$
Complete step by step solution:
Given that, ${\log _3}2$, ${\log _3}\left( {{2^x} - 5} \right)$, ${\log _3}\left( {{2^x} - \dfrac{7}{2}} \right)$ are AP.
Now we will apply the formula $2b = a + c$ where $a,b,c$ are in Ap.
Here $a = {\log _3}2$, $b = {\log _3}\left( {{2^x} - 5} \right)$ and $c = {\log _3}\left( {{2^x} - \dfrac{7}{2}} \right)$
Therefore,
$2{\log _3}\left( {{2^x} - 5} \right) = {\log _3}2 + {\log _3}\left( {{2^x} - \dfrac{7}{2}} \right)$
Now we will apply $n\log m = \log {m^n}$ on left side of the equation
${\log _3}{\left( {{2^x} - 5} \right)^2} = {\log _3}2 + {\log _3}\left( {{2^x} - \dfrac{7}{2}} \right)$
Now we will apply $\log a + \log b = \log ab$ on the right side of the equation
${\log _3}{\left( {{2^x} - 5} \right)^2} = {\log _3}2\left( {{2^x} - \dfrac{7}{2}} \right)$
Then apply the formula ${\log _a}b = {\log _a}c \Rightarrow b = c$
${\left( {{2^x} - 5} \right)^2} = 2\left( {{2^x} - \dfrac{7}{2}} \right)$
Now we will apply the identity ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
${2^{2x}} - 2 \cdot 5 \cdot {2^x} + {5^2} = 2\left( {{2^x} - \dfrac{7}{2}} \right)$
$ \Rightarrow {2^{2x}} - 10 \cdot {2^x} + 25 = 2 \cdot {2^x} - 7$
$ \Rightarrow {2^{2x}} - 12 \cdot {2^x} + 32 = 0$
Now apply the factorization method
${2^{2x}} - 8 \cdot {2^x} - 4 \cdot {2^x} + 32 = 0$
$ \Rightarrow {2^x}\left( {{2^x} - 8} \right) - 4\left( {{2^x} - 8} \right) = 0$
$ \Rightarrow \left( {{2^x} - 8} \right)\left( {{2^x} - 4} \right) = 0$
Equate each factor with zero
${2^x} - 8 = 0$ or, ${2^x} - 4 = 0$
$ \Rightarrow {2^x} = 8$ $ \Rightarrow {2^x} = 4$
$ \Rightarrow {2^x} = {2^3}$ $ \Rightarrow {2^x} = {2^2}$
$ \Rightarrow x = 3$ $ \Rightarrow x = 2$
Now we put $x = 2$ in ${\log _3}\left( {{2^x} - 5} \right)$.
${\log _3}\left( {{2^2} - 5} \right) = {\log _3}\left( { - 1} \right)$
Since the logarithm of a negative does not exist. So $x \ne 2$.
Therefore $x = 3$.
Option ‘B’ is correct
Note: If three terms are in AP then the difference between consecutive terms is constant. To solve the question you need to use the above concept to make an equation. Remember all solutions of $x$ might not satisfy the logarithmic terms, since the logarithmic of a negative number is undefined.
Formula Used:
If $a,b,c$ are in Ap then $2b = a + c$.
$n\log m = \log {m^n}$
$\log a + \log b = \log ab$
${\log _a}b = {\log _a}c \Rightarrow b = c$
${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
${a^x} = {a^y} \Rightarrow x = y$
Complete step by step solution:
Given that, ${\log _3}2$, ${\log _3}\left( {{2^x} - 5} \right)$, ${\log _3}\left( {{2^x} - \dfrac{7}{2}} \right)$ are AP.
Now we will apply the formula $2b = a + c$ where $a,b,c$ are in Ap.
Here $a = {\log _3}2$, $b = {\log _3}\left( {{2^x} - 5} \right)$ and $c = {\log _3}\left( {{2^x} - \dfrac{7}{2}} \right)$
Therefore,
$2{\log _3}\left( {{2^x} - 5} \right) = {\log _3}2 + {\log _3}\left( {{2^x} - \dfrac{7}{2}} \right)$
Now we will apply $n\log m = \log {m^n}$ on left side of the equation
${\log _3}{\left( {{2^x} - 5} \right)^2} = {\log _3}2 + {\log _3}\left( {{2^x} - \dfrac{7}{2}} \right)$
Now we will apply $\log a + \log b = \log ab$ on the right side of the equation
${\log _3}{\left( {{2^x} - 5} \right)^2} = {\log _3}2\left( {{2^x} - \dfrac{7}{2}} \right)$
Then apply the formula ${\log _a}b = {\log _a}c \Rightarrow b = c$
${\left( {{2^x} - 5} \right)^2} = 2\left( {{2^x} - \dfrac{7}{2}} \right)$
Now we will apply the identity ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
${2^{2x}} - 2 \cdot 5 \cdot {2^x} + {5^2} = 2\left( {{2^x} - \dfrac{7}{2}} \right)$
$ \Rightarrow {2^{2x}} - 10 \cdot {2^x} + 25 = 2 \cdot {2^x} - 7$
$ \Rightarrow {2^{2x}} - 12 \cdot {2^x} + 32 = 0$
Now apply the factorization method
${2^{2x}} - 8 \cdot {2^x} - 4 \cdot {2^x} + 32 = 0$
$ \Rightarrow {2^x}\left( {{2^x} - 8} \right) - 4\left( {{2^x} - 8} \right) = 0$
$ \Rightarrow \left( {{2^x} - 8} \right)\left( {{2^x} - 4} \right) = 0$
Equate each factor with zero
${2^x} - 8 = 0$ or, ${2^x} - 4 = 0$
$ \Rightarrow {2^x} = 8$ $ \Rightarrow {2^x} = 4$
$ \Rightarrow {2^x} = {2^3}$ $ \Rightarrow {2^x} = {2^2}$
$ \Rightarrow x = 3$ $ \Rightarrow x = 2$
Now we put $x = 2$ in ${\log _3}\left( {{2^x} - 5} \right)$.
${\log _3}\left( {{2^2} - 5} \right) = {\log _3}\left( { - 1} \right)$
Since the logarithm of a negative does not exist. So $x \ne 2$.
Therefore $x = 3$.
Option ‘B’ is correct
Note: If three terms are in AP then the difference between consecutive terms is constant. To solve the question you need to use the above concept to make an equation. Remember all solutions of $x$ might not satisfy the logarithmic terms, since the logarithmic of a negative number is undefined.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

