
If ${\log _3}2$, ${\log _3}\left( {{2^x} - 5} \right)$, ${\log _3}\left( {{2^x} - \dfrac{7}{2}} \right)$ are in AP. Then find the value of $x$.
A. 2
B. 3
C. 4
D. 2,3
Answer
162.3k+ views
Hint: Given that ${\log _3}2$, ${\log _3}\left( {{2^x} - 5} \right)$, ${\log _3}\left( {{2^x} - \dfrac{7}{2}} \right)$ are AP, we will apply the condition of the AP terms. Then solve the equation for x. After that put the solutions of x in the given terms to check which solution satisfies the terms.
Formula Used:
If $a,b,c$ are in Ap then $2b = a + c$.
$n\log m = \log {m^n}$
$\log a + \log b = \log ab$
${\log _a}b = {\log _a}c \Rightarrow b = c$
${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
${a^x} = {a^y} \Rightarrow x = y$
Complete step by step solution:
Given that, ${\log _3}2$, ${\log _3}\left( {{2^x} - 5} \right)$, ${\log _3}\left( {{2^x} - \dfrac{7}{2}} \right)$ are AP.
Now we will apply the formula $2b = a + c$ where $a,b,c$ are in Ap.
Here $a = {\log _3}2$, $b = {\log _3}\left( {{2^x} - 5} \right)$ and $c = {\log _3}\left( {{2^x} - \dfrac{7}{2}} \right)$
Therefore,
$2{\log _3}\left( {{2^x} - 5} \right) = {\log _3}2 + {\log _3}\left( {{2^x} - \dfrac{7}{2}} \right)$
Now we will apply $n\log m = \log {m^n}$ on left side of the equation
${\log _3}{\left( {{2^x} - 5} \right)^2} = {\log _3}2 + {\log _3}\left( {{2^x} - \dfrac{7}{2}} \right)$
Now we will apply $\log a + \log b = \log ab$ on the right side of the equation
${\log _3}{\left( {{2^x} - 5} \right)^2} = {\log _3}2\left( {{2^x} - \dfrac{7}{2}} \right)$
Then apply the formula ${\log _a}b = {\log _a}c \Rightarrow b = c$
${\left( {{2^x} - 5} \right)^2} = 2\left( {{2^x} - \dfrac{7}{2}} \right)$
Now we will apply the identity ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
${2^{2x}} - 2 \cdot 5 \cdot {2^x} + {5^2} = 2\left( {{2^x} - \dfrac{7}{2}} \right)$
$ \Rightarrow {2^{2x}} - 10 \cdot {2^x} + 25 = 2 \cdot {2^x} - 7$
$ \Rightarrow {2^{2x}} - 12 \cdot {2^x} + 32 = 0$
Now apply the factorization method
${2^{2x}} - 8 \cdot {2^x} - 4 \cdot {2^x} + 32 = 0$
$ \Rightarrow {2^x}\left( {{2^x} - 8} \right) - 4\left( {{2^x} - 8} \right) = 0$
$ \Rightarrow \left( {{2^x} - 8} \right)\left( {{2^x} - 4} \right) = 0$
Equate each factor with zero
${2^x} - 8 = 0$ or, ${2^x} - 4 = 0$
$ \Rightarrow {2^x} = 8$ $ \Rightarrow {2^x} = 4$
$ \Rightarrow {2^x} = {2^3}$ $ \Rightarrow {2^x} = {2^2}$
$ \Rightarrow x = 3$ $ \Rightarrow x = 2$
Now we put $x = 2$ in ${\log _3}\left( {{2^x} - 5} \right)$.
${\log _3}\left( {{2^2} - 5} \right) = {\log _3}\left( { - 1} \right)$
Since the logarithm of a negative does not exist. So $x \ne 2$.
Therefore $x = 3$.
Option ‘B’ is correct
Note: If three terms are in AP then the difference between consecutive terms is constant. To solve the question you need to use the above concept to make an equation. Remember all solutions of $x$ might not satisfy the logarithmic terms, since the logarithmic of a negative number is undefined.
Formula Used:
If $a,b,c$ are in Ap then $2b = a + c$.
$n\log m = \log {m^n}$
$\log a + \log b = \log ab$
${\log _a}b = {\log _a}c \Rightarrow b = c$
${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
${a^x} = {a^y} \Rightarrow x = y$
Complete step by step solution:
Given that, ${\log _3}2$, ${\log _3}\left( {{2^x} - 5} \right)$, ${\log _3}\left( {{2^x} - \dfrac{7}{2}} \right)$ are AP.
Now we will apply the formula $2b = a + c$ where $a,b,c$ are in Ap.
Here $a = {\log _3}2$, $b = {\log _3}\left( {{2^x} - 5} \right)$ and $c = {\log _3}\left( {{2^x} - \dfrac{7}{2}} \right)$
Therefore,
$2{\log _3}\left( {{2^x} - 5} \right) = {\log _3}2 + {\log _3}\left( {{2^x} - \dfrac{7}{2}} \right)$
Now we will apply $n\log m = \log {m^n}$ on left side of the equation
${\log _3}{\left( {{2^x} - 5} \right)^2} = {\log _3}2 + {\log _3}\left( {{2^x} - \dfrac{7}{2}} \right)$
Now we will apply $\log a + \log b = \log ab$ on the right side of the equation
${\log _3}{\left( {{2^x} - 5} \right)^2} = {\log _3}2\left( {{2^x} - \dfrac{7}{2}} \right)$
Then apply the formula ${\log _a}b = {\log _a}c \Rightarrow b = c$
${\left( {{2^x} - 5} \right)^2} = 2\left( {{2^x} - \dfrac{7}{2}} \right)$
Now we will apply the identity ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
${2^{2x}} - 2 \cdot 5 \cdot {2^x} + {5^2} = 2\left( {{2^x} - \dfrac{7}{2}} \right)$
$ \Rightarrow {2^{2x}} - 10 \cdot {2^x} + 25 = 2 \cdot {2^x} - 7$
$ \Rightarrow {2^{2x}} - 12 \cdot {2^x} + 32 = 0$
Now apply the factorization method
${2^{2x}} - 8 \cdot {2^x} - 4 \cdot {2^x} + 32 = 0$
$ \Rightarrow {2^x}\left( {{2^x} - 8} \right) - 4\left( {{2^x} - 8} \right) = 0$
$ \Rightarrow \left( {{2^x} - 8} \right)\left( {{2^x} - 4} \right) = 0$
Equate each factor with zero
${2^x} - 8 = 0$ or, ${2^x} - 4 = 0$
$ \Rightarrow {2^x} = 8$ $ \Rightarrow {2^x} = 4$
$ \Rightarrow {2^x} = {2^3}$ $ \Rightarrow {2^x} = {2^2}$
$ \Rightarrow x = 3$ $ \Rightarrow x = 2$
Now we put $x = 2$ in ${\log _3}\left( {{2^x} - 5} \right)$.
${\log _3}\left( {{2^2} - 5} \right) = {\log _3}\left( { - 1} \right)$
Since the logarithm of a negative does not exist. So $x \ne 2$.
Therefore $x = 3$.
Option ‘B’ is correct
Note: If three terms are in AP then the difference between consecutive terms is constant. To solve the question you need to use the above concept to make an equation. Remember all solutions of $x$ might not satisfy the logarithmic terms, since the logarithmic of a negative number is undefined.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
