
If \[\left[ x \right]\] denotes the greatest integer less than or equal to \[x\], then what is the value of the integral \[\int\limits_0^2 {{x^2}} \left[ x \right]dx\]?
A. \[\dfrac{5}{3}\]
B. \[\dfrac{7}{3}\]
C. \[\dfrac{8}{3}\]
D. \[\dfrac{4}{3}\]
Answer
207k+ views
Hint: Here, a definite integral is given. First, simplify the given integral by applying the integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\]. Then, check the given condition of the greatest integer function and substitute the values in the integral. After that, solve the integral by using the integration formula \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]. In the end, apply the upper and lower limits and solve it to get the required answer.
Formula Used: \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
Greatest integer function: \[\left[ x \right] = n\], where \[n \le x < n + 1\]
Complete step by step solution:Given:
\[\left[ x \right]\] denotes the greatest integer less than or equal to \[x\]
And the definite integral is \[\int\limits_0^2 {{x^2}} \left[ x \right]dx\]
Let consider,
\[I = \int\limits_0^2 {{x^2}} \left[ x \right]dx\]
Simplify the integral by applying the integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\].
\[I = \int\limits_0^1 {{x^2}} \left[ x \right]dx + \int\limits_1^2 {{x^2}} \left[ x \right]dx\]
Now apply the condition of the greatest integer function\[\left[ x \right] = n\], where \[n \le x < n + 1\].
We get,
\[I = \int\limits_0^1 {{x^2}} \left( 0 \right)dx + \int\limits_1^2 {{x^2}} \left( 1 \right)dx\]
\[ \Rightarrow I = 0 + \int\limits_1^2 {{x^2}} dx\]
\[ \Rightarrow I = \int\limits_1^2 {{x^2}} dx\]
Solve the integral by using the integration formula \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\].
\[ \Rightarrow I = \left[ {\dfrac{{{x^3}}}{3}} \right]_1^2\]
Apply the upper and lower limits.
\[ \Rightarrow I = \left[ {\dfrac{{{2^3}}}{3} - \dfrac{{{1^3}}}{3}} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{8}{3} - \dfrac{1}{3}} \right]\]
\[ \Rightarrow I = \dfrac{7}{3}\]
Therefore, \[\int\limits_0^2 {{x^2}} \left[ x \right]dx = \dfrac{7}{3}\].
Option ‘B’ is correct
Note: Students get confused about the concept of the greatest integer function. It happens because of the word greatest.
The greater integer function is a function that gives the output of the greatest integer that will be less than the input or lesser than the input.
Formula Used: \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
Greatest integer function: \[\left[ x \right] = n\], where \[n \le x < n + 1\]
Complete step by step solution:Given:
\[\left[ x \right]\] denotes the greatest integer less than or equal to \[x\]
And the definite integral is \[\int\limits_0^2 {{x^2}} \left[ x \right]dx\]
Let consider,
\[I = \int\limits_0^2 {{x^2}} \left[ x \right]dx\]
Simplify the integral by applying the integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\].
\[I = \int\limits_0^1 {{x^2}} \left[ x \right]dx + \int\limits_1^2 {{x^2}} \left[ x \right]dx\]
Now apply the condition of the greatest integer function\[\left[ x \right] = n\], where \[n \le x < n + 1\].
We get,
\[I = \int\limits_0^1 {{x^2}} \left( 0 \right)dx + \int\limits_1^2 {{x^2}} \left( 1 \right)dx\]
\[ \Rightarrow I = 0 + \int\limits_1^2 {{x^2}} dx\]
\[ \Rightarrow I = \int\limits_1^2 {{x^2}} dx\]
Solve the integral by using the integration formula \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\].
\[ \Rightarrow I = \left[ {\dfrac{{{x^3}}}{3}} \right]_1^2\]
Apply the upper and lower limits.
\[ \Rightarrow I = \left[ {\dfrac{{{2^3}}}{3} - \dfrac{{{1^3}}}{3}} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{8}{3} - \dfrac{1}{3}} \right]\]
\[ \Rightarrow I = \dfrac{7}{3}\]
Therefore, \[\int\limits_0^2 {{x^2}} \left[ x \right]dx = \dfrac{7}{3}\].
Option ‘B’ is correct
Note: Students get confused about the concept of the greatest integer function. It happens because of the word greatest.
The greater integer function is a function that gives the output of the greatest integer that will be less than the input or lesser than the input.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hybridisation in Chemistry – Concept, Types & Applications

Collision: Meaning, Types & Examples in Physics

Average and RMS Value in Physics: Formula, Comparison & Application

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

How to Convert a Galvanometer into an Ammeter or Voltmeter

