
If \[\left[ x \right]\] denotes the greatest integer less than or equal to \[x\], then what is the value of the integral \[\int\limits_0^2 {{x^2}} \left[ x \right]dx\]?
A. \[\dfrac{5}{3}\]
B. \[\dfrac{7}{3}\]
C. \[\dfrac{8}{3}\]
D. \[\dfrac{4}{3}\]
Answer
161.7k+ views
Hint: Here, a definite integral is given. First, simplify the given integral by applying the integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\]. Then, check the given condition of the greatest integer function and substitute the values in the integral. After that, solve the integral by using the integration formula \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]. In the end, apply the upper and lower limits and solve it to get the required answer.
Formula Used: \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
Greatest integer function: \[\left[ x \right] = n\], where \[n \le x < n + 1\]
Complete step by step solution:Given:
\[\left[ x \right]\] denotes the greatest integer less than or equal to \[x\]
And the definite integral is \[\int\limits_0^2 {{x^2}} \left[ x \right]dx\]
Let consider,
\[I = \int\limits_0^2 {{x^2}} \left[ x \right]dx\]
Simplify the integral by applying the integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\].
\[I = \int\limits_0^1 {{x^2}} \left[ x \right]dx + \int\limits_1^2 {{x^2}} \left[ x \right]dx\]
Now apply the condition of the greatest integer function\[\left[ x \right] = n\], where \[n \le x < n + 1\].
We get,
\[I = \int\limits_0^1 {{x^2}} \left( 0 \right)dx + \int\limits_1^2 {{x^2}} \left( 1 \right)dx\]
\[ \Rightarrow I = 0 + \int\limits_1^2 {{x^2}} dx\]
\[ \Rightarrow I = \int\limits_1^2 {{x^2}} dx\]
Solve the integral by using the integration formula \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\].
\[ \Rightarrow I = \left[ {\dfrac{{{x^3}}}{3}} \right]_1^2\]
Apply the upper and lower limits.
\[ \Rightarrow I = \left[ {\dfrac{{{2^3}}}{3} - \dfrac{{{1^3}}}{3}} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{8}{3} - \dfrac{1}{3}} \right]\]
\[ \Rightarrow I = \dfrac{7}{3}\]
Therefore, \[\int\limits_0^2 {{x^2}} \left[ x \right]dx = \dfrac{7}{3}\].
Option ‘B’ is correct
Note: Students get confused about the concept of the greatest integer function. It happens because of the word greatest.
The greater integer function is a function that gives the output of the greatest integer that will be less than the input or lesser than the input.
Formula Used: \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
Greatest integer function: \[\left[ x \right] = n\], where \[n \le x < n + 1\]
Complete step by step solution:Given:
\[\left[ x \right]\] denotes the greatest integer less than or equal to \[x\]
And the definite integral is \[\int\limits_0^2 {{x^2}} \left[ x \right]dx\]
Let consider,
\[I = \int\limits_0^2 {{x^2}} \left[ x \right]dx\]
Simplify the integral by applying the integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\].
\[I = \int\limits_0^1 {{x^2}} \left[ x \right]dx + \int\limits_1^2 {{x^2}} \left[ x \right]dx\]
Now apply the condition of the greatest integer function\[\left[ x \right] = n\], where \[n \le x < n + 1\].
We get,
\[I = \int\limits_0^1 {{x^2}} \left( 0 \right)dx + \int\limits_1^2 {{x^2}} \left( 1 \right)dx\]
\[ \Rightarrow I = 0 + \int\limits_1^2 {{x^2}} dx\]
\[ \Rightarrow I = \int\limits_1^2 {{x^2}} dx\]
Solve the integral by using the integration formula \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\].
\[ \Rightarrow I = \left[ {\dfrac{{{x^3}}}{3}} \right]_1^2\]
Apply the upper and lower limits.
\[ \Rightarrow I = \left[ {\dfrac{{{2^3}}}{3} - \dfrac{{{1^3}}}{3}} \right]\]
\[ \Rightarrow I = \left[ {\dfrac{8}{3} - \dfrac{1}{3}} \right]\]
\[ \Rightarrow I = \dfrac{7}{3}\]
Therefore, \[\int\limits_0^2 {{x^2}} \left[ x \right]dx = \dfrac{7}{3}\].
Option ‘B’ is correct
Note: Students get confused about the concept of the greatest integer function. It happens because of the word greatest.
The greater integer function is a function that gives the output of the greatest integer that will be less than the input or lesser than the input.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
