
If $\left( \begin{matrix}
x & 0 \\
1 & y \\
\end{matrix} \right)+\left( \begin{matrix}
-2 & 1 \\
3 & 4 \\
\end{matrix} \right)=\left( \begin{matrix}
3 & 5 \\
6 & 3 \\
\end{matrix} \right)-\left( \begin{matrix}
2 & 4 \\
2 & 1 \\
\end{matrix} \right)$ then
A . $x=-3,y=-2$
B. $x=3,y=-2$
C. $x=3,y=2$
D. $x=-3,y=2$
Answer
216.3k+ views
Hint:In this question, we have given the matrices, and all they are of $2\times 2$ order and we have to find the value of x and y. to find the values, we have to add and subtract the matrices. First, we solve the left-hand side by adding the matrices, then we solve the right-hand side by subtracting the matrices. Then we equate both equations and simplify them to get the value of x and y.
Complete step by step Solution:
Given $\left( \begin{matrix}
x & 0 \\
1 & y \\
\end{matrix} \right)+\left( \begin{matrix}
-2 & 1 \\
3 & 4 \\
\end{matrix} \right)=\left( \begin{matrix}
3 & 5 \\
6 & 3 \\
\end{matrix} \right)-\left( \begin{matrix}
2 & 4 \\
2 & 1 \\
\end{matrix} \right)$
All the matrices are of $2\times 2$ order.
We have to find the value of x and y.
To find the value of x and y, we can add and subtract the given matrices.
First we add the matrices $\left( \begin{matrix}
x & 0 \\
1 & y \\
\end{matrix} \right)$ and $\left( \begin{matrix}
-2 & 1 \\
3 & 4 \\
\end{matrix} \right)$
Then $\left( \begin{matrix}
x & 0 \\
1 & y \\
\end{matrix} \right)$ + $\left( \begin{matrix}
-2 & 1 \\
3 & 4 \\
\end{matrix} \right)$ = $\left( \begin{matrix}
x+(-2) & 0+1 \\
1+3 & y+4 \\
\end{matrix} \right)$
Hence $\left( \begin{matrix}
x & 0 \\
1 & y \\
\end{matrix} \right)$ + $\left( \begin{matrix}
-2 & 1 \\
3 & 4 \\
\end{matrix} \right)$ = $\left( \begin{matrix}
x-2 & 1 \\
4 & y+4 \\
\end{matrix} \right)$
Now we subtract the matrices $\left( \begin{matrix}
3 & 5 \\
6 & 3 \\
\end{matrix} \right)$ and $\left( \begin{matrix}
2 & 4 \\
2 & 1 \\
\end{matrix} \right)$
$\left( \begin{matrix}
3 & 5 \\
6 & 3 \\
\end{matrix} \right)$ - $\left( \begin{matrix}
2 & 4 \\
2 & 1 \\
\end{matrix} \right)$ = $\left( \begin{matrix}
3-2 & 5-4 \\
6-2 & 3-1 \\
\end{matrix} \right)$
$\left( \begin{matrix}
3 & 5 \\
6 & 3 \\
\end{matrix} \right)$ - $\left( \begin{matrix}
2 & 4 \\
2 & 1 \\
\end{matrix} \right)$ = $\left( \begin{matrix}
1 & 1 \\
4 & 2 \\
\end{matrix} \right)$
Now we equate both the matrices and get
$\left( \begin{matrix}
x-2 & 1 \\
4 & y+4 \\
\end{matrix} \right)$ = $\left( \begin{matrix}
1 & 1 \\
4 & 2 \\
\end{matrix} \right)$
Now we compute and simplify the above terms, and we get
$x-2=1$ and
$y+4=2$
By simplifying the above equations, we get
$x=3,y=-2$
Hence the value of $x=3,y=-2$
Therefore, the correct option is (B).
Note: Keep in mind before adding and subtracting any matrices that they have an equal number of columns and rows to be added. As the given matrices are of order $2\times 2$, so we can add it simply. Similarly we can add a $2\times 3$ matrix with a $2\times 3$ matrix or $3\times 3$ matrix with $3\times 3$ matrix. However, we cannot add $2\times 3$ matrix with a $3\times 2$ matrix. Similarly, we cannot add $2\times 2$ matrix with a $3\times 3$ matrix. The order in which we add the matrix is not important because the addition of two matrices is commutative.
Complete step by step Solution:
Given $\left( \begin{matrix}
x & 0 \\
1 & y \\
\end{matrix} \right)+\left( \begin{matrix}
-2 & 1 \\
3 & 4 \\
\end{matrix} \right)=\left( \begin{matrix}
3 & 5 \\
6 & 3 \\
\end{matrix} \right)-\left( \begin{matrix}
2 & 4 \\
2 & 1 \\
\end{matrix} \right)$
All the matrices are of $2\times 2$ order.
We have to find the value of x and y.
To find the value of x and y, we can add and subtract the given matrices.
First we add the matrices $\left( \begin{matrix}
x & 0 \\
1 & y \\
\end{matrix} \right)$ and $\left( \begin{matrix}
-2 & 1 \\
3 & 4 \\
\end{matrix} \right)$
Then $\left( \begin{matrix}
x & 0 \\
1 & y \\
\end{matrix} \right)$ + $\left( \begin{matrix}
-2 & 1 \\
3 & 4 \\
\end{matrix} \right)$ = $\left( \begin{matrix}
x+(-2) & 0+1 \\
1+3 & y+4 \\
\end{matrix} \right)$
Hence $\left( \begin{matrix}
x & 0 \\
1 & y \\
\end{matrix} \right)$ + $\left( \begin{matrix}
-2 & 1 \\
3 & 4 \\
\end{matrix} \right)$ = $\left( \begin{matrix}
x-2 & 1 \\
4 & y+4 \\
\end{matrix} \right)$
Now we subtract the matrices $\left( \begin{matrix}
3 & 5 \\
6 & 3 \\
\end{matrix} \right)$ and $\left( \begin{matrix}
2 & 4 \\
2 & 1 \\
\end{matrix} \right)$
$\left( \begin{matrix}
3 & 5 \\
6 & 3 \\
\end{matrix} \right)$ - $\left( \begin{matrix}
2 & 4 \\
2 & 1 \\
\end{matrix} \right)$ = $\left( \begin{matrix}
3-2 & 5-4 \\
6-2 & 3-1 \\
\end{matrix} \right)$
$\left( \begin{matrix}
3 & 5 \\
6 & 3 \\
\end{matrix} \right)$ - $\left( \begin{matrix}
2 & 4 \\
2 & 1 \\
\end{matrix} \right)$ = $\left( \begin{matrix}
1 & 1 \\
4 & 2 \\
\end{matrix} \right)$
Now we equate both the matrices and get
$\left( \begin{matrix}
x-2 & 1 \\
4 & y+4 \\
\end{matrix} \right)$ = $\left( \begin{matrix}
1 & 1 \\
4 & 2 \\
\end{matrix} \right)$
Now we compute and simplify the above terms, and we get
$x-2=1$ and
$y+4=2$
By simplifying the above equations, we get
$x=3,y=-2$
Hence the value of $x=3,y=-2$
Therefore, the correct option is (B).
Note: Keep in mind before adding and subtracting any matrices that they have an equal number of columns and rows to be added. As the given matrices are of order $2\times 2$, so we can add it simply. Similarly we can add a $2\times 3$ matrix with a $2\times 3$ matrix or $3\times 3$ matrix with $3\times 3$ matrix. However, we cannot add $2\times 3$ matrix with a $3\times 2$ matrix. Similarly, we cannot add $2\times 2$ matrix with a $3\times 3$ matrix. The order in which we add the matrix is not important because the addition of two matrices is commutative.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

