
If $\int\limits_{-1}^{1}{f(x)dx=0}$, then
A. $f(x)=f(-x)$
B. $f(-x)=-f(x)$
C. $f(x)=2f(x)$
D. None of these
Answer
217.5k+ views
Hint: In this question, we are to find the type of the function i.e., an even function or an odd function. Here the interval of the integral is in the form of $[-a, a]$. So, we can split the integral into two parts among the intervals $[-a,0]$ and $[0, a]$.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$(upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
$I=\int\limits_{-1}^{1}{f(x)dx=0}$
Since the interval is among $[-1,1]$ we can split the integral into two parts with the intervals $[-1,0]$ and $[0,1]$. I.e.,
$\begin{align}
& \int\limits_{-1}^{1}{f(x)dx=0} \\
& \Rightarrow \int\limits_{-1}^{0}{f(x)dx+\int\limits_{0}^{1}{f(x)dx=0}} \\
& \Rightarrow \int\limits_{-1}^{0}{f(x)dx}=-\int\limits_{0}^{1}{f(x)dx} \\
& \Rightarrow \int\limits_{0}^{1}{f(-x)dx=}\int\limits_{0}^{1}{\left[ -f(x) \right]dx} \\
\end{align}$
Therefore, we can conclude that
$f(-x)=-f(x)$
So, the function in the given integral is an odd function.
Option ‘B’ is correct
Note: Here we need to remember that the given integral should have the interval in the form of $[-a, a]$. So, we can evaluate the integral by parts with the intervals $[-a,0]$ and $[0, a]$.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$(upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
$I=\int\limits_{-1}^{1}{f(x)dx=0}$
Since the interval is among $[-1,1]$ we can split the integral into two parts with the intervals $[-1,0]$ and $[0,1]$. I.e.,
$\begin{align}
& \int\limits_{-1}^{1}{f(x)dx=0} \\
& \Rightarrow \int\limits_{-1}^{0}{f(x)dx+\int\limits_{0}^{1}{f(x)dx=0}} \\
& \Rightarrow \int\limits_{-1}^{0}{f(x)dx}=-\int\limits_{0}^{1}{f(x)dx} \\
& \Rightarrow \int\limits_{0}^{1}{f(-x)dx=}\int\limits_{0}^{1}{\left[ -f(x) \right]dx} \\
\end{align}$
Therefore, we can conclude that
$f(-x)=-f(x)$
So, the function in the given integral is an odd function.
Option ‘B’ is correct
Note: Here we need to remember that the given integral should have the interval in the form of $[-a, a]$. So, we can evaluate the integral by parts with the intervals $[-a,0]$ and $[0, a]$.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

