
If $\int\limits_{-1}^{1}{f(x)dx=0}$, then
A. $f(x)=f(-x)$
B. $f(-x)=-f(x)$
C. $f(x)=2f(x)$
D. None of these
Answer
162.3k+ views
Hint: In this question, we are to find the type of the function i.e., an even function or an odd function. Here the interval of the integral is in the form of $[-a, a]$. So, we can split the integral into two parts among the intervals $[-a,0]$ and $[0, a]$.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$(upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
$I=\int\limits_{-1}^{1}{f(x)dx=0}$
Since the interval is among $[-1,1]$ we can split the integral into two parts with the intervals $[-1,0]$ and $[0,1]$. I.e.,
$\begin{align}
& \int\limits_{-1}^{1}{f(x)dx=0} \\
& \Rightarrow \int\limits_{-1}^{0}{f(x)dx+\int\limits_{0}^{1}{f(x)dx=0}} \\
& \Rightarrow \int\limits_{-1}^{0}{f(x)dx}=-\int\limits_{0}^{1}{f(x)dx} \\
& \Rightarrow \int\limits_{0}^{1}{f(-x)dx=}\int\limits_{0}^{1}{\left[ -f(x) \right]dx} \\
\end{align}$
Therefore, we can conclude that
$f(-x)=-f(x)$
So, the function in the given integral is an odd function.
Option ‘B’ is correct
Note: Here we need to remember that the given integral should have the interval in the form of $[-a, a]$. So, we can evaluate the integral by parts with the intervals $[-a,0]$ and $[0, a]$.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$(upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
$I=\int\limits_{-1}^{1}{f(x)dx=0}$
Since the interval is among $[-1,1]$ we can split the integral into two parts with the intervals $[-1,0]$ and $[0,1]$. I.e.,
$\begin{align}
& \int\limits_{-1}^{1}{f(x)dx=0} \\
& \Rightarrow \int\limits_{-1}^{0}{f(x)dx+\int\limits_{0}^{1}{f(x)dx=0}} \\
& \Rightarrow \int\limits_{-1}^{0}{f(x)dx}=-\int\limits_{0}^{1}{f(x)dx} \\
& \Rightarrow \int\limits_{0}^{1}{f(-x)dx=}\int\limits_{0}^{1}{\left[ -f(x) \right]dx} \\
\end{align}$
Therefore, we can conclude that
$f(-x)=-f(x)$
So, the function in the given integral is an odd function.
Option ‘B’ is correct
Note: Here we need to remember that the given integral should have the interval in the form of $[-a, a]$. So, we can evaluate the integral by parts with the intervals $[-a,0]$ and $[0, a]$.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

IIIT JEE Main Cutoff 2024

IIT Full Form

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

JEE Main Cut-Off for NIT Kurukshetra: All Important Details

JEE Main Cut-Off for VNIT Nagpur 2025: Check All Rounds Cutoff Ranks

Other Pages
NEET 2025: All Major Changes in Application Process, Pattern and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025: Important Information and Key Updates

1 Billion in Rupees - Conversion, Solved Examples and FAQs

NEET 2025 Syllabus PDF by NTA (Released)

Important Days In June: What Do You Need To Know
