
If \[\int\limits_{ - 1}^4 {f\left( x \right)} dx = 4\] and \[\int\limits_2^4 {\left( {3 - f\left( x \right)} \right)} dx = 7\] , then what is the value of \[\int\limits_2^{ - 1} {f\left( x \right)} dx\]?
A. 2
B. \[ - 3\]
C. \[ - 5\]
D. None of these
Answer
217.5k+ views
Hint: Here, two equations of the definite integrals are given. First, solve the given integral \[\int\limits_2^4 {\left( {3 - f\left( x \right)} \right)} dx = 7\] and calculate the value of \[\int\limits_2^4 {f\left( x \right)} dx\]. Then, simplify the integral by applying the formula \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\]. Similarly, simplify \[\int\limits_{ - 1}^4 {f\left( x \right)} dx = 4\] by using the formula \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\]. After that, simplify the integral \[\int\limits_2^{ - 1} {f\left( x \right)} dx\] by using the integration rule \[\int\limits_a^b {f\left( x \right)} dx = - \int\limits_b^a {f\left( x \right)} dx\]. In the end, solve the equations and get the required answer.
Formula Used:\[\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx - \int\limits_a^b {g\left( x \right)} dx\]
\[\int\limits_a^b n dx = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\], where \[n\] is a number.
Complete step by step solution:The given equations of the definite integrals are \[\int\limits_{ - 1}^4 {f\left( x \right)} dx = 4\] and \[\int\limits_2^4 {\left( {3 - f\left( x \right)} \right)} dx = 7\].
Let’s solve the integral \[\int\limits_2^4 {\left( {3 - f\left( x \right)} \right)} dx = 7\].
Apply the integration rule \[\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx - \int\limits_a^b {g\left( x \right)} dx\] on the left-hand side.
\[\int\limits_2^4 3 dx - \int\limits_2^4 {f\left( x \right)} dx = 7\]
Solve the first term by applying the integration formula \[\int\limits_a^b n dx = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\].
\[\int\limits_2^4 3 dx - \int\limits_2^4 {f\left( x \right)} dx = 7\]
\[ \Rightarrow \left[ {3x} \right]_2^4 - \int\limits_2^4 {f\left( x \right)} dx = 7\]
\[ \Rightarrow 3\left( {4 - 2} \right) - \int\limits_2^4 {f\left( x \right)} dx = 7\]
\[ \Rightarrow 6 - \int\limits_2^4 {f\left( x \right)} dx = 7\]
\[ \Rightarrow \int\limits_2^4 {f\left( x \right)} dx = - 1\]
Apply the standard formula \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Thus, \[\int\limits_2^4 {f\left( x \right)} dx = F\left( 4 \right) - F\left( 2 \right) = - 1\]. \[.....\left( 1 \right)\]
Simplify the given equation \[\int\limits_{ - 1}^4 {f\left( x \right)} dx = 4\].
Apply the standard formula \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
We get,
\[\int\limits_{ - 1}^4 {f\left( x \right)} dx = F\left( 4 \right) - F\left( { - 1} \right) = 4\] \[.....\left( 2 \right)\]
We have to calculate the value of the integral \[\int\limits_2^{ - 1} {f\left( x \right)} dx\].
Apply the integration rule\[\int\limits_a^b {f\left( x \right)} dx = - \int\limits_b^a {f\left( x \right)} dx\].
Then, \[\int\limits_2^{ - 1} {f\left( x \right)} dx = - \int\limits_{ - 1}^2 {f\left( x \right)} dx\]
Apply the standard formula \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\] on the right-hand side.
\[\int\limits_2^{ - 1} {f\left( x \right)} dx = - \left[ {F\left( 2 \right) - F\left( { - 1} \right)} \right]\]
\[ \Rightarrow \int\limits_2^{ - 1} {f\left( x \right)} dx = F\left( { - 1} \right) - F\left( 2 \right)\]
Now to calculate the value of \[\int\limits_2^{ - 1} {f\left( x \right)} dx\] subtract the equation \[\left( 2 \right)\] from the equation \[\left( 1 \right)\].
\[\int\limits_{ - 1}^2 {f\left( x \right)} dx = \left[ {F\left( 4 \right) - F\left( 2 \right)} \right] - \left[ {F\left( 4 \right) - F\left( { - 1} \right)} \right]\]
\[ \Rightarrow \int\limits_{ - 1}^2 {f\left( x \right)} dx = - 1 - 4\]
\[ \Rightarrow \int\limits_{ - 1}^2 {f\left( x \right)} dx = - 5\]
Option ‘C’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Sometimes they also add integration constant \[c\] in the definite integral. But definite integral is calculated for a certain interval. So, there is no need to write the integration constant.
Formula Used:\[\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx - \int\limits_a^b {g\left( x \right)} dx\]
\[\int\limits_a^b n dx = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\], where \[n\] is a number.
Complete step by step solution:The given equations of the definite integrals are \[\int\limits_{ - 1}^4 {f\left( x \right)} dx = 4\] and \[\int\limits_2^4 {\left( {3 - f\left( x \right)} \right)} dx = 7\].
Let’s solve the integral \[\int\limits_2^4 {\left( {3 - f\left( x \right)} \right)} dx = 7\].
Apply the integration rule \[\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx - \int\limits_a^b {g\left( x \right)} dx\] on the left-hand side.
\[\int\limits_2^4 3 dx - \int\limits_2^4 {f\left( x \right)} dx = 7\]
Solve the first term by applying the integration formula \[\int\limits_a^b n dx = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\].
\[\int\limits_2^4 3 dx - \int\limits_2^4 {f\left( x \right)} dx = 7\]
\[ \Rightarrow \left[ {3x} \right]_2^4 - \int\limits_2^4 {f\left( x \right)} dx = 7\]
\[ \Rightarrow 3\left( {4 - 2} \right) - \int\limits_2^4 {f\left( x \right)} dx = 7\]
\[ \Rightarrow 6 - \int\limits_2^4 {f\left( x \right)} dx = 7\]
\[ \Rightarrow \int\limits_2^4 {f\left( x \right)} dx = - 1\]
Apply the standard formula \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Thus, \[\int\limits_2^4 {f\left( x \right)} dx = F\left( 4 \right) - F\left( 2 \right) = - 1\]. \[.....\left( 1 \right)\]
Simplify the given equation \[\int\limits_{ - 1}^4 {f\left( x \right)} dx = 4\].
Apply the standard formula \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
We get,
\[\int\limits_{ - 1}^4 {f\left( x \right)} dx = F\left( 4 \right) - F\left( { - 1} \right) = 4\] \[.....\left( 2 \right)\]
We have to calculate the value of the integral \[\int\limits_2^{ - 1} {f\left( x \right)} dx\].
Apply the integration rule\[\int\limits_a^b {f\left( x \right)} dx = - \int\limits_b^a {f\left( x \right)} dx\].
Then, \[\int\limits_2^{ - 1} {f\left( x \right)} dx = - \int\limits_{ - 1}^2 {f\left( x \right)} dx\]
Apply the standard formula \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\] on the right-hand side.
\[\int\limits_2^{ - 1} {f\left( x \right)} dx = - \left[ {F\left( 2 \right) - F\left( { - 1} \right)} \right]\]
\[ \Rightarrow \int\limits_2^{ - 1} {f\left( x \right)} dx = F\left( { - 1} \right) - F\left( 2 \right)\]
Now to calculate the value of \[\int\limits_2^{ - 1} {f\left( x \right)} dx\] subtract the equation \[\left( 2 \right)\] from the equation \[\left( 1 \right)\].
\[\int\limits_{ - 1}^2 {f\left( x \right)} dx = \left[ {F\left( 4 \right) - F\left( 2 \right)} \right] - \left[ {F\left( 4 \right) - F\left( { - 1} \right)} \right]\]
\[ \Rightarrow \int\limits_{ - 1}^2 {f\left( x \right)} dx = - 1 - 4\]
\[ \Rightarrow \int\limits_{ - 1}^2 {f\left( x \right)} dx = - 5\]
Option ‘C’ is correct
Note: Students often get confused about the formula of the definite integral of the function. They used \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) + F\left( a \right)\] , which is incorrect. The correct formula is \[\int\limits_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right)\].
Sometimes they also add integration constant \[c\] in the definite integral. But definite integral is calculated for a certain interval. So, there is no need to write the integration constant.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

