
If \[\int {\dfrac{{dx}}{{\left[ {{x^4} + {x^3}} \right]}}} = \left[ {\dfrac{A}{{{x^2}}}} \right] + \left( {\dfrac{B}{x}} \right) + \log \left| {\dfrac{x}{{(x + 1)}}} \right| + c\], then
A. \[A = 1/2,B = 1\]
B. \[A = 1,B = 1/2\]
C. \[A = - (1/2),B = 1\]
D. \[A = 1,B = 1\]
Answer
232.8k+ views
Hint: Integrate the value on the left-hand side and match it with the values on the right-hand side to find the values of constants A and B. Integrate the value on the left hand by dividing the denominator into separate parts using partial fractions.
Formula used:
We have used the formula of partial fraction that is given below
\[\dfrac{1}{{{x^3}(x + 1)}} = \dfrac{A}{{x + 1}} + \dfrac{{B{x^2} + cx + D}}{{{x^3}}}\]
Complete step by step answer: We are given an equation that is \[\int {\dfrac{{dx}}{{\left[ {{x^4} + {x^3}} \right]}}} = \left[ {\dfrac{A}{{{x^2}}}} \right] + \left( {\dfrac{B}{x}} \right) + \log \left| {\dfrac{x}{{(x + 1)}}} \right| + c\]
Now we apply the formula of partial fraction in the given equation, we get
\[
\dfrac{1}{{{x^3}(x + 1)}} = \dfrac{A}{{x + 1}} + \dfrac{{B{x^2} + cx + D}}{{{x^3}}} \\
1 = A{x^3} + B{x^3} + C{x^2} + Dx + B{x^2} + Cx + D \\
1 = (A + B){x^3} + (C + B){x^2} + (D + C)x + D \\
\]
The required equations are
\[
A + B = 0 \\
C + B = 0 \\
D + C = 0 \\
D = 1 \\
\]
So, the required values are
\[
A = - 1 \\
B = 1 \\
C = - 1 \\
D = 1 \\
\]
Now, we substitute the values in the given equation
\[
\int {\dfrac{{dx}}{{{x^3}(x + 1)}}} = \int {\left( { - \dfrac{1}{{x + 1}} + \dfrac{{{x^3} - x + 1}}{{{x^3}}}} \right)} dx \\
= \int {\left( { - \dfrac{1}{{x + 1}} + \dfrac{1}{x} - \dfrac{1}{{{x^2}}} + \dfrac{1}{{{x^3}}}} \right)} dx \\
- \ln |x + 1| + \ln |x| + \dfrac{1}{x} - \dfrac{1}{{2{x^2}}} + c \\
\]
Therefore, the value of \[A = - \dfrac{1}{2},B = 1\]
So, option C is correct
Hence, the value of \[A = - \dfrac{1}{2},B = 1\].
Note: Many students made miscalculations while writing the values of A, B, C and D so make sure about the formula and also solve the question with the help of the formula. The result on the right-hand side is given in separate terms even though we have to integrate only a single term on the left-hand side, so students should be able to identify that we have to use partial fractions.
Formula used:
We have used the formula of partial fraction that is given below
\[\dfrac{1}{{{x^3}(x + 1)}} = \dfrac{A}{{x + 1}} + \dfrac{{B{x^2} + cx + D}}{{{x^3}}}\]
Complete step by step answer: We are given an equation that is \[\int {\dfrac{{dx}}{{\left[ {{x^4} + {x^3}} \right]}}} = \left[ {\dfrac{A}{{{x^2}}}} \right] + \left( {\dfrac{B}{x}} \right) + \log \left| {\dfrac{x}{{(x + 1)}}} \right| + c\]
Now we apply the formula of partial fraction in the given equation, we get
\[
\dfrac{1}{{{x^3}(x + 1)}} = \dfrac{A}{{x + 1}} + \dfrac{{B{x^2} + cx + D}}{{{x^3}}} \\
1 = A{x^3} + B{x^3} + C{x^2} + Dx + B{x^2} + Cx + D \\
1 = (A + B){x^3} + (C + B){x^2} + (D + C)x + D \\
\]
The required equations are
\[
A + B = 0 \\
C + B = 0 \\
D + C = 0 \\
D = 1 \\
\]
So, the required values are
\[
A = - 1 \\
B = 1 \\
C = - 1 \\
D = 1 \\
\]
Now, we substitute the values in the given equation
\[
\int {\dfrac{{dx}}{{{x^3}(x + 1)}}} = \int {\left( { - \dfrac{1}{{x + 1}} + \dfrac{{{x^3} - x + 1}}{{{x^3}}}} \right)} dx \\
= \int {\left( { - \dfrac{1}{{x + 1}} + \dfrac{1}{x} - \dfrac{1}{{{x^2}}} + \dfrac{1}{{{x^3}}}} \right)} dx \\
- \ln |x + 1| + \ln |x| + \dfrac{1}{x} - \dfrac{1}{{2{x^2}}} + c \\
\]
Therefore, the value of \[A = - \dfrac{1}{2},B = 1\]
So, option C is correct
Hence, the value of \[A = - \dfrac{1}{2},B = 1\].
Note: Many students made miscalculations while writing the values of A, B, C and D so make sure about the formula and also solve the question with the help of the formula. The result on the right-hand side is given in separate terms even though we have to integrate only a single term on the left-hand side, so students should be able to identify that we have to use partial fractions.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

