
If in the $\triangle ABC, AB = 2BC$, then $tan\dfrac{B}{2}:cot(\dfrac{C-A}{2})$
A. 3:1
B. 2:1
C. 1:2
D. 1:3
Answer
233.1k+ views
Hint: We are given $\triangle ABC$ with $AB = 2BC$, we need to find the ratio $tan\dfrac{B}{2}:cot(\dfrac{C-A}{2})$. Recall the law of sins and the trigonometric identities. We use these concepts to solve the question.
Formula Used: - Law of sines,
$\dfrac{sin A}{a} = \dfrac{sin B}{b} = \dfrac{sin C}{c}$
- $tan(90^{\circ} - x) = cot x$
-$sin(x-y)+sin(x+y) = 2sinxcosy$
Complete step by step solution: We have $\triangle ABC$ with $AB = 2BC$. We need to find the ratio between $tan \dfrac{B}{2}$ and $cot (\dfrac{C-A}{2})$.
We know that the angles of a triangle are supplementary. Therefore, we have
$\angle A+\angle B+\angle C = 180^{\circ}$
$\angle B = 180^{\circ}-(\angle C +\angle A)$
$\dfrac{\angle B}{2} = \dfrac{180^{\circ}-(\angle C+\angle A)}{2}$
$\dfrac{\angle B}{2} = 90^{\circ}-\dfrac{(\angle C + \angle A)}{2}$
$\therefore tan\dfrac{B}{2} = tan~(90^{\circ}-\dfrac{(\angle C + \angle A)}{2})$
$\implies tan \dfrac{B}{2} = cot(\dfrac{(C + A)}{2})$
Now,
$\dfrac{tan \dfrac{B}{2}}{cot(\dfrac{C-A}{2})} =\dfrac{cot(\dfrac{(C + A)}{2})}{cot(\dfrac{(C-A)}{2})}$
$\implies \dfrac{tan \dfrac{B}{2}}{cot(\dfrac{(C-A)}{2})} = cot(\dfrac{(C + A)}{2})tan(\dfrac{(C-A)}{2})$
$\implies \dfrac{tan \dfrac{B}{2}}{cot(\dfrac{(C-A)}{2})} = \dfrac{cos(\dfrac{(C + A)}{2})sin(\dfrac{(C-A)}{2})}{sin(\dfrac{(C + A)}{2})cos(\dfrac{(C-A)}{2})}$
$\implies \dfrac{tan \dfrac{B}{2}}{cot(\dfrac{(C-A)}{2})} = \dfrac{2cos(\dfrac{(C + A)}{2})sin(\dfrac{(C-A)}{2})}{2sin(\dfrac{(C + A)}{2})cos(\dfrac{(C-A)}{2})}$
$\implies \dfrac{tan \dfrac{B}{2}}{cot(\dfrac{(C-A)}{2})} = \dfrac{2sin(\dfrac{(C-A)}{2})cos(\dfrac{(C + A)}{2})}{2sin(\dfrac{(C + A)}{2})cos(\dfrac{(C-A)}{2})}$
By using the equation,$sin(x-y)+sin(x+y) = 2sinxcosy$ we simplify the numerator and denominator.
$\implies \dfrac{tan \dfrac{B}{2}}{cot(\dfrac{(C-A)}{2})} = \dfrac{sin(\dfrac{(C-A)}{2}-\dfrac{(C + A)}{2}))+sin(\dfrac{(C-A)}{2}+\dfrac{(C + A)}{2}}{sin(\dfrac{(C + A)}{2})- \dfrac{(C-A)}{2})+sin (\dfrac{(C + A)}{2})+ \dfrac{(C-A)}{2})}$
$\implies \dfrac{tan \dfrac{B}{2}}{cot(\dfrac{(C-A)}{2})} =\dfrac{sin(\dfrac{C-A-C-A}{2})+sin(\dfrac{C-A+C+A}{2})}{sin(\dfrac{C+A-C+A}{2})+sin(\dfrac{C+A+C-A}{2})}$
$\implies \dfrac{tan \dfrac{B}{2}}{cot(\dfrac{(C-A)}{2})} =\dfrac{sin(\dfrac{-2A}{2})+sin(\dfrac{2C}{2})}{sin(\dfrac{2A}{2})+sin(\dfrac{2C}{2})}$
$\implies \dfrac{tan \dfrac{B}{2}}{cot(\dfrac{(C-A)}{2})} =\dfrac{sin(-A)+sin(C)}{sin(A)+sin(C)}$
$\implies \dfrac{tan \dfrac{B}{2}}{cot(\dfrac{(C-A)}{2})} =\dfrac{sin(C)-sin(A)}{sin(C)+sin(A)}$
$\implies \dfrac{tan \dfrac{B}{2}}{cot(\dfrac{(C-A)}{2})} =\dfrac{\dfrac{sin(C)}{sin A}-1}{\dfrac{sin(C)}{sin(A)}+1}$ --(1)
By using the law of sines,

$\dfrac{sin A}{a} = \dfrac{sin B}{b} = \dfrac{sin C}{c}$
We are given that $AB = 2BC$,
$\therefore c = 2a$
Therefore, we get
$\dfrac{sin A}{a} = \dfrac{sin B}{b} = \dfrac{sin C}{2a}$
$\implies \dfrac{sin A}{a} =\dfrac{sin C}{2a}$
$\dfrac{sin C}{sin A} = \dfrac{2a}{a}$
$\implies \dfrac{sin C}{sin A} = 2$
Substituting the above equation in (1) we get,
$\dfrac{tan \dfrac{B}{2}}{cot(\dfrac{(C-A)}{2})} =\dfrac{2-1}{2+1}$
$\therefore \dfrac{tan \dfrac{B}{2}}{cot(\dfrac{(C-A)}{2})} =\dfrac{1}{3}$
$\implies tan\dfrac{B}{2} : cot(\dfrac{C-A}{2}) = 1:3$
So, Option ‘D’ is correct
Note: We can solve this question by using the Naiper's Analogy. There are three equations in Naiper's Analogy,
$tan(\dfrac{A-B}{2}) = \dfrac{a-b}{a+b}cot(\dfrac{C}{2})$
$tan(\dfrac{B-C}{2}) = \dfrac{b-c}{b+c}cot(\dfrac{A}{2})$
$tan(\dfrac{C-A}{2}) = \dfrac{c-a}{c+a}cot(\dfrac{B}{2})$
Modify the last equation,
$\dfrac{1}{cot(\dfrac{B}{2})} = \dfrac{c-a}{c+a}\dfrac{1}{tan(\dfrac{C-A}{2})}$
$\implies tan(\dfrac{B}{2}) = \dfrac{c-a}{c+a}cot(\dfrac{C-A}{2})$
Now applying $c = 2a$, we get the required ratio.
Formula Used: - Law of sines,
$\dfrac{sin A}{a} = \dfrac{sin B}{b} = \dfrac{sin C}{c}$
- $tan(90^{\circ} - x) = cot x$
-$sin(x-y)+sin(x+y) = 2sinxcosy$
Complete step by step solution: We have $\triangle ABC$ with $AB = 2BC$. We need to find the ratio between $tan \dfrac{B}{2}$ and $cot (\dfrac{C-A}{2})$.
We know that the angles of a triangle are supplementary. Therefore, we have
$\angle A+\angle B+\angle C = 180^{\circ}$
$\angle B = 180^{\circ}-(\angle C +\angle A)$
$\dfrac{\angle B}{2} = \dfrac{180^{\circ}-(\angle C+\angle A)}{2}$
$\dfrac{\angle B}{2} = 90^{\circ}-\dfrac{(\angle C + \angle A)}{2}$
$\therefore tan\dfrac{B}{2} = tan~(90^{\circ}-\dfrac{(\angle C + \angle A)}{2})$
$\implies tan \dfrac{B}{2} = cot(\dfrac{(C + A)}{2})$
Now,
$\dfrac{tan \dfrac{B}{2}}{cot(\dfrac{C-A}{2})} =\dfrac{cot(\dfrac{(C + A)}{2})}{cot(\dfrac{(C-A)}{2})}$
$\implies \dfrac{tan \dfrac{B}{2}}{cot(\dfrac{(C-A)}{2})} = cot(\dfrac{(C + A)}{2})tan(\dfrac{(C-A)}{2})$
$\implies \dfrac{tan \dfrac{B}{2}}{cot(\dfrac{(C-A)}{2})} = \dfrac{cos(\dfrac{(C + A)}{2})sin(\dfrac{(C-A)}{2})}{sin(\dfrac{(C + A)}{2})cos(\dfrac{(C-A)}{2})}$
$\implies \dfrac{tan \dfrac{B}{2}}{cot(\dfrac{(C-A)}{2})} = \dfrac{2cos(\dfrac{(C + A)}{2})sin(\dfrac{(C-A)}{2})}{2sin(\dfrac{(C + A)}{2})cos(\dfrac{(C-A)}{2})}$
$\implies \dfrac{tan \dfrac{B}{2}}{cot(\dfrac{(C-A)}{2})} = \dfrac{2sin(\dfrac{(C-A)}{2})cos(\dfrac{(C + A)}{2})}{2sin(\dfrac{(C + A)}{2})cos(\dfrac{(C-A)}{2})}$
By using the equation,$sin(x-y)+sin(x+y) = 2sinxcosy$ we simplify the numerator and denominator.
$\implies \dfrac{tan \dfrac{B}{2}}{cot(\dfrac{(C-A)}{2})} = \dfrac{sin(\dfrac{(C-A)}{2}-\dfrac{(C + A)}{2}))+sin(\dfrac{(C-A)}{2}+\dfrac{(C + A)}{2}}{sin(\dfrac{(C + A)}{2})- \dfrac{(C-A)}{2})+sin (\dfrac{(C + A)}{2})+ \dfrac{(C-A)}{2})}$
$\implies \dfrac{tan \dfrac{B}{2}}{cot(\dfrac{(C-A)}{2})} =\dfrac{sin(\dfrac{C-A-C-A}{2})+sin(\dfrac{C-A+C+A}{2})}{sin(\dfrac{C+A-C+A}{2})+sin(\dfrac{C+A+C-A}{2})}$
$\implies \dfrac{tan \dfrac{B}{2}}{cot(\dfrac{(C-A)}{2})} =\dfrac{sin(\dfrac{-2A}{2})+sin(\dfrac{2C}{2})}{sin(\dfrac{2A}{2})+sin(\dfrac{2C}{2})}$
$\implies \dfrac{tan \dfrac{B}{2}}{cot(\dfrac{(C-A)}{2})} =\dfrac{sin(-A)+sin(C)}{sin(A)+sin(C)}$
$\implies \dfrac{tan \dfrac{B}{2}}{cot(\dfrac{(C-A)}{2})} =\dfrac{sin(C)-sin(A)}{sin(C)+sin(A)}$
$\implies \dfrac{tan \dfrac{B}{2}}{cot(\dfrac{(C-A)}{2})} =\dfrac{\dfrac{sin(C)}{sin A}-1}{\dfrac{sin(C)}{sin(A)}+1}$ --(1)
By using the law of sines,

$\dfrac{sin A}{a} = \dfrac{sin B}{b} = \dfrac{sin C}{c}$
We are given that $AB = 2BC$,
$\therefore c = 2a$
Therefore, we get
$\dfrac{sin A}{a} = \dfrac{sin B}{b} = \dfrac{sin C}{2a}$
$\implies \dfrac{sin A}{a} =\dfrac{sin C}{2a}$
$\dfrac{sin C}{sin A} = \dfrac{2a}{a}$
$\implies \dfrac{sin C}{sin A} = 2$
Substituting the above equation in (1) we get,
$\dfrac{tan \dfrac{B}{2}}{cot(\dfrac{(C-A)}{2})} =\dfrac{2-1}{2+1}$
$\therefore \dfrac{tan \dfrac{B}{2}}{cot(\dfrac{(C-A)}{2})} =\dfrac{1}{3}$
$\implies tan\dfrac{B}{2} : cot(\dfrac{C-A}{2}) = 1:3$
So, Option ‘D’ is correct
Note: We can solve this question by using the Naiper's Analogy. There are three equations in Naiper's Analogy,
$tan(\dfrac{A-B}{2}) = \dfrac{a-b}{a+b}cot(\dfrac{C}{2})$
$tan(\dfrac{B-C}{2}) = \dfrac{b-c}{b+c}cot(\dfrac{A}{2})$
$tan(\dfrac{C-A}{2}) = \dfrac{c-a}{c+a}cot(\dfrac{B}{2})$
Modify the last equation,
$\dfrac{1}{cot(\dfrac{B}{2})} = \dfrac{c-a}{c+a}\dfrac{1}{tan(\dfrac{C-A}{2})}$
$\implies tan(\dfrac{B}{2}) = \dfrac{c-a}{c+a}cot(\dfrac{C-A}{2})$
Now applying $c = 2a$, we get the required ratio.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

