Answer
Verified
85.5k+ views
Hint: Use binomial theorem of series expansion.
Expanding both the terms of the above term we get:
\[
{\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n} \\
= \left( {1 + {}^m{C_1}{x^1} + {}^m{C_2}{x^2} + {}^m{C_3}{x^3} + ........} \right)\left( {1 - {}^n{C_1}{x^1} + {}^n{C_2}{x^2} - {}^n{C_3}{x^3} + ........} \right) \\
= 1\left( {1 + {}^m{C_1}{x^1} + {}^m{C_2}{x^2} + {}^m{C_3}{x^3} + ........} \right) \\
- {}^n{C_1}{x^1}\left( {1 + {}^m{C_1}{x^1} + {}^m{C_2}{x^2} + {}^m{C_3}{x^3} + ........} \right) \\
+ {}^n{C_2}{x^2}\left( {1 + {}^m{C_1}{x^1} + {}^m{C_2}{x^2} + {}^m{C_3}{x^3} + ........} \right) \\
+ \cdots \cdots \cdots \\
\\
\]
Expanding the equation further to find the coefficients, we get:
\[ \Rightarrow 1 + x\left( {{}^m{C_1} - {}^n{C_1}} \right) + {x^2}\left( {{}^m{C_2} - {}^m{C_1}{}^n{C_1} + {}^n{C_2}} \right) + \cdots \cdots \]
Hence, the coefficient of the term containing $x$ is
$
\Rightarrow {}^m{C_1} - {}^n{C_1} = 3 \\
\Rightarrow m - n = 3 \\
$ ---- (1)
Similarly coefficient of the term containing ${x^2}$ is
$
\Rightarrow {}^m{C_2} - {}^m{C_1}{}^n{C_1} + {}^n{C_2} = - 6 \\
\Rightarrow m\left( {m - 1} \right) - 2mn + n\left( {n - 1} \right) = - 12 \\
\Rightarrow {m^2} - m - 2mn + {n^2} - n = - 12 \\
\Rightarrow {\left( {m - n} \right)^2} - \left( {m + n} \right) = - 12 \\
\Rightarrow 9 - \left( {m + n} \right) = - 12 \\
\Rightarrow m + n = 21 \\
$ ---- (2)
Adding equation 1 and 2 to find the value of m
$
\Rightarrow \left( {m + n} \right) + \left( {m - n} \right) = 21 + 3 \\
\Rightarrow 2m = 24 \\
\Rightarrow m = 12 \\
$
Hence option C is the correct answer.
Note: - In the above question binomial theorem of series expansion has been used in the very first step to expand the terms. We do not need to expand and multiply the whole series as we were concerned with only the first and second power of x so only two to three terms have been considered.
Expanding both the terms of the above term we get:
\[
{\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n} \\
= \left( {1 + {}^m{C_1}{x^1} + {}^m{C_2}{x^2} + {}^m{C_3}{x^3} + ........} \right)\left( {1 - {}^n{C_1}{x^1} + {}^n{C_2}{x^2} - {}^n{C_3}{x^3} + ........} \right) \\
= 1\left( {1 + {}^m{C_1}{x^1} + {}^m{C_2}{x^2} + {}^m{C_3}{x^3} + ........} \right) \\
- {}^n{C_1}{x^1}\left( {1 + {}^m{C_1}{x^1} + {}^m{C_2}{x^2} + {}^m{C_3}{x^3} + ........} \right) \\
+ {}^n{C_2}{x^2}\left( {1 + {}^m{C_1}{x^1} + {}^m{C_2}{x^2} + {}^m{C_3}{x^3} + ........} \right) \\
+ \cdots \cdots \cdots \\
\\
\]
Expanding the equation further to find the coefficients, we get:
\[ \Rightarrow 1 + x\left( {{}^m{C_1} - {}^n{C_1}} \right) + {x^2}\left( {{}^m{C_2} - {}^m{C_1}{}^n{C_1} + {}^n{C_2}} \right) + \cdots \cdots \]
Hence, the coefficient of the term containing $x$ is
$
\Rightarrow {}^m{C_1} - {}^n{C_1} = 3 \\
\Rightarrow m - n = 3 \\
$ ---- (1)
Similarly coefficient of the term containing ${x^2}$ is
$
\Rightarrow {}^m{C_2} - {}^m{C_1}{}^n{C_1} + {}^n{C_2} = - 6 \\
\Rightarrow m\left( {m - 1} \right) - 2mn + n\left( {n - 1} \right) = - 12 \\
\Rightarrow {m^2} - m - 2mn + {n^2} - n = - 12 \\
\Rightarrow {\left( {m - n} \right)^2} - \left( {m + n} \right) = - 12 \\
\Rightarrow 9 - \left( {m + n} \right) = - 12 \\
\Rightarrow m + n = 21 \\
$ ---- (2)
Adding equation 1 and 2 to find the value of m
$
\Rightarrow \left( {m + n} \right) + \left( {m - n} \right) = 21 + 3 \\
\Rightarrow 2m = 24 \\
\Rightarrow m = 12 \\
$
Hence option C is the correct answer.
Note: - In the above question binomial theorem of series expansion has been used in the very first step to expand the terms. We do not need to expand and multiply the whole series as we were concerned with only the first and second power of x so only two to three terms have been considered.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
A scooterist sees a bus 1km ahead of him moving with class 11 physics JEE_Main
Derive an expression for maximum speed of a car on class 11 physics JEE_Main
A cylinder of 10 Lcapacity at 300 Kcontaining the Hegas class 11 chemistry JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
The process requiring the absorption of energy is A class 11 chemistry JEE_Main