Answer
Verified
87.9k+ views
Hint: The cap on the \[n\] vector signifies that \[n\] is a unit vector, hence it has a magnitude equal to 1. Two vectors which are perpendicular must have a dot product equal to zero.
Formula used: In this solution we will be using the following formulae;
\[A \cdot B = {A_x}{B_x} + {A_y}{B_y}\] where \[A\] and \[B\] are vectors, \[{A_x}\] is the x component of the vector \[A\] while \[{A_y}\] is the y component. Similarly for the vector \[B\].
\[\left| A \right| = \sqrt {A_x^2 + A_y^2} \] where \[\left| A \right|\] signifies the magnitude of a vector \[A\].
Complete Step-by-Step Solution:
We have a particular vector with unknown components. This vector however is perpendicular to a vector of known components. We are to determine the component of the first vector
It is necessary to note that the first vector \[\hat n = a\hat i + b\hat j\] is a unit vector signified by the cap on the \[n\]. Hence, the magnitude of the vector is equal to 1.
This unit vector is perpendicular to the vector \[r = \hat i + \hat j\], the dot product of the two vectors is zero. Hence,
\[\hat n \cdot r = \left( {a\hat i + b\hat j} \right) \cdot \left( {\hat i + \hat j} \right) = a + b = 0\]
\[ \Rightarrow a = - b\]
Now, recall the unit vector has a magnitude of 1, hence
\[\left| {\hat n} \right| = \sqrt {{a^2} + {b^2}} = 1\]
\[ \Rightarrow \sqrt {{a^2} + {{\left( { - a} \right)}^2}} = \sqrt 2 a = 1\]
Then by making \[a\] subject, we get
\[a = \dfrac{1}{{\sqrt 2 }}\]
Now since, \[a = - b\]
Then
\[b = - a = - \dfrac{1}{{\sqrt 2 }}\]
Hence, the values of a and b may be \[\left( {\dfrac{1}{{\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}} \right)\]
Hence, the correct option is D
Note: For clarity, observe that the values \[a = \dfrac{1}{{\sqrt 2 }}\] or \[b = - \dfrac{1}{{\sqrt 2 }}\] is peculiar to either of the variables as any of them can take any of the values (based on the calculations), as proven below;
At
\[\left| {\hat n} \right| = \sqrt {{a^2} + {b^2}} = 1\] we could say that since \[a = - b\] then
\[\sqrt {{{\left( { - b} \right)}^2} + {b^2}} = \sqrt 2 b = 1\]
Hence, by making \[b\] subject of the formula, we get
\[b = \dfrac{1}{{\sqrt 2 }}\]
And similarly, from \[a = - b\], we have
\[a = - \dfrac{1}{{\sqrt 2 }}\]
Hence, we see that the two variables have switched positions. What is important is that when one takes one value, the other must take the other value.
Formula used: In this solution we will be using the following formulae;
\[A \cdot B = {A_x}{B_x} + {A_y}{B_y}\] where \[A\] and \[B\] are vectors, \[{A_x}\] is the x component of the vector \[A\] while \[{A_y}\] is the y component. Similarly for the vector \[B\].
\[\left| A \right| = \sqrt {A_x^2 + A_y^2} \] where \[\left| A \right|\] signifies the magnitude of a vector \[A\].
Complete Step-by-Step Solution:
We have a particular vector with unknown components. This vector however is perpendicular to a vector of known components. We are to determine the component of the first vector
It is necessary to note that the first vector \[\hat n = a\hat i + b\hat j\] is a unit vector signified by the cap on the \[n\]. Hence, the magnitude of the vector is equal to 1.
This unit vector is perpendicular to the vector \[r = \hat i + \hat j\], the dot product of the two vectors is zero. Hence,
\[\hat n \cdot r = \left( {a\hat i + b\hat j} \right) \cdot \left( {\hat i + \hat j} \right) = a + b = 0\]
\[ \Rightarrow a = - b\]
Now, recall the unit vector has a magnitude of 1, hence
\[\left| {\hat n} \right| = \sqrt {{a^2} + {b^2}} = 1\]
\[ \Rightarrow \sqrt {{a^2} + {{\left( { - a} \right)}^2}} = \sqrt 2 a = 1\]
Then by making \[a\] subject, we get
\[a = \dfrac{1}{{\sqrt 2 }}\]
Now since, \[a = - b\]
Then
\[b = - a = - \dfrac{1}{{\sqrt 2 }}\]
Hence, the values of a and b may be \[\left( {\dfrac{1}{{\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}} \right)\]
Hence, the correct option is D
Note: For clarity, observe that the values \[a = \dfrac{1}{{\sqrt 2 }}\] or \[b = - \dfrac{1}{{\sqrt 2 }}\] is peculiar to either of the variables as any of them can take any of the values (based on the calculations), as proven below;
At
\[\left| {\hat n} \right| = \sqrt {{a^2} + {b^2}} = 1\] we could say that since \[a = - b\] then
\[\sqrt {{{\left( { - b} \right)}^2} + {b^2}} = \sqrt 2 b = 1\]
Hence, by making \[b\] subject of the formula, we get
\[b = \dfrac{1}{{\sqrt 2 }}\]
And similarly, from \[a = - b\], we have
\[a = - \dfrac{1}{{\sqrt 2 }}\]
Hence, we see that the two variables have switched positions. What is important is that when one takes one value, the other must take the other value.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main