
if \[\hat n = a\hat i + b\hat j\] is perpendicular to the vector \[\left( {\hat i + \hat j} \right)\]. Then the value of \[a\] and \[b\] may be:
(A) \[1, - 1\]
(B) \[\dfrac{1}{{\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}\]
(C) \[1,0\]
(D) \[\dfrac{1}{{\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}\]
Answer
169.8k+ views
Hint: The cap on the \[n\] vector signifies that \[n\] is a unit vector, hence it has a magnitude equal to 1. Two vectors which are perpendicular must have a dot product equal to zero.
Formula used: In this solution we will be using the following formulae;
\[A \cdot B = {A_x}{B_x} + {A_y}{B_y}\] where \[A\] and \[B\] are vectors, \[{A_x}\] is the x component of the vector \[A\] while \[{A_y}\] is the y component. Similarly for the vector \[B\].
\[\left| A \right| = \sqrt {A_x^2 + A_y^2} \] where \[\left| A \right|\] signifies the magnitude of a vector \[A\].
Complete Step-by-Step Solution:
We have a particular vector with unknown components. This vector however is perpendicular to a vector of known components. We are to determine the component of the first vector
It is necessary to note that the first vector \[\hat n = a\hat i + b\hat j\] is a unit vector signified by the cap on the \[n\]. Hence, the magnitude of the vector is equal to 1.
This unit vector is perpendicular to the vector \[r = \hat i + \hat j\], the dot product of the two vectors is zero. Hence,
\[\hat n \cdot r = \left( {a\hat i + b\hat j} \right) \cdot \left( {\hat i + \hat j} \right) = a + b = 0\]
\[ \Rightarrow a = - b\]
Now, recall the unit vector has a magnitude of 1, hence
\[\left| {\hat n} \right| = \sqrt {{a^2} + {b^2}} = 1\]
\[ \Rightarrow \sqrt {{a^2} + {{\left( { - a} \right)}^2}} = \sqrt 2 a = 1\]
Then by making \[a\] subject, we get
\[a = \dfrac{1}{{\sqrt 2 }}\]
Now since, \[a = - b\]
Then
\[b = - a = - \dfrac{1}{{\sqrt 2 }}\]
Hence, the values of a and b may be \[\left( {\dfrac{1}{{\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}} \right)\]
Hence, the correct option is D
Note: For clarity, observe that the values \[a = \dfrac{1}{{\sqrt 2 }}\] or \[b = - \dfrac{1}{{\sqrt 2 }}\] is peculiar to either of the variables as any of them can take any of the values (based on the calculations), as proven below;
At
\[\left| {\hat n} \right| = \sqrt {{a^2} + {b^2}} = 1\] we could say that since \[a = - b\] then
\[\sqrt {{{\left( { - b} \right)}^2} + {b^2}} = \sqrt 2 b = 1\]
Hence, by making \[b\] subject of the formula, we get
\[b = \dfrac{1}{{\sqrt 2 }}\]
And similarly, from \[a = - b\], we have
\[a = - \dfrac{1}{{\sqrt 2 }}\]
Hence, we see that the two variables have switched positions. What is important is that when one takes one value, the other must take the other value.
Formula used: In this solution we will be using the following formulae;
\[A \cdot B = {A_x}{B_x} + {A_y}{B_y}\] where \[A\] and \[B\] are vectors, \[{A_x}\] is the x component of the vector \[A\] while \[{A_y}\] is the y component. Similarly for the vector \[B\].
\[\left| A \right| = \sqrt {A_x^2 + A_y^2} \] where \[\left| A \right|\] signifies the magnitude of a vector \[A\].
Complete Step-by-Step Solution:
We have a particular vector with unknown components. This vector however is perpendicular to a vector of known components. We are to determine the component of the first vector
It is necessary to note that the first vector \[\hat n = a\hat i + b\hat j\] is a unit vector signified by the cap on the \[n\]. Hence, the magnitude of the vector is equal to 1.
This unit vector is perpendicular to the vector \[r = \hat i + \hat j\], the dot product of the two vectors is zero. Hence,
\[\hat n \cdot r = \left( {a\hat i + b\hat j} \right) \cdot \left( {\hat i + \hat j} \right) = a + b = 0\]
\[ \Rightarrow a = - b\]
Now, recall the unit vector has a magnitude of 1, hence
\[\left| {\hat n} \right| = \sqrt {{a^2} + {b^2}} = 1\]
\[ \Rightarrow \sqrt {{a^2} + {{\left( { - a} \right)}^2}} = \sqrt 2 a = 1\]
Then by making \[a\] subject, we get
\[a = \dfrac{1}{{\sqrt 2 }}\]
Now since, \[a = - b\]
Then
\[b = - a = - \dfrac{1}{{\sqrt 2 }}\]
Hence, the values of a and b may be \[\left( {\dfrac{1}{{\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}} \right)\]
Hence, the correct option is D
Note: For clarity, observe that the values \[a = \dfrac{1}{{\sqrt 2 }}\] or \[b = - \dfrac{1}{{\sqrt 2 }}\] is peculiar to either of the variables as any of them can take any of the values (based on the calculations), as proven below;
At
\[\left| {\hat n} \right| = \sqrt {{a^2} + {b^2}} = 1\] we could say that since \[a = - b\] then
\[\sqrt {{{\left( { - b} \right)}^2} + {b^2}} = \sqrt 2 b = 1\]
Hence, by making \[b\] subject of the formula, we get
\[b = \dfrac{1}{{\sqrt 2 }}\]
And similarly, from \[a = - b\], we have
\[a = - \dfrac{1}{{\sqrt 2 }}\]
Hence, we see that the two variables have switched positions. What is important is that when one takes one value, the other must take the other value.
Recently Updated Pages
Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Hydrocarbons: Types, Formula, Structure & Examples Explained

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
NCERT Solution for Class 11 Physics Chapter 1 Units and Measurements - 2025-26

NCERT Solution for Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
