
If \[f(x) = \sin \left[ {{{\cos }^{ - 1}}\dfrac{{\left( {1 - {2^{2x}}} \right)}}{{\left( {1 + {2^{2x}}} \right)}}} \right]\] and its first derivative with respect to \[x\] is \[\left( {\dfrac{{ - b}}{a}} \right){\log _e}2\] when \[x = 1\], where \[a\] and \[b\] are integers, then the minimum value of \[\left| {{a^2} - {b^2}} \right|\] is
Answer
163.5k+ views
Hint : We are given a function \[f(x) = \sin \left[ {{{\cos }^{ - 1}}\dfrac{{\left( {1 - {2^{2x}}} \right)}}{{\left( {1 + {2^{2x}}} \right)}}} \right]\] and its first derivative is\[\left( {\dfrac{{ - b}}{a}} \right){\log _e}2\]when \[x = 1\]. We have to find the minimum value of \[\left| {{a^2} - {b^2}} \right|\] . We will be first finding the values of \[a\] and \[b\] using below mentioned trigonometric identities and then substitute values of \[a\] and \[b\] in \[\left| {{a^2} - {b^2}} \right|\] to find required answer.
Formula used: Following formulas will be useful for solving this question
\[
\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }} \\
\sin 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} \\
\]
\[d(\dfrac{u}{v}) = \dfrac{{u'v - uv'}}{{{v^2}}}\]
\[d({a^x}) = {a^x}\ln a\]
Complete step-by-step Solution :
We are given function \[f(x) = \sin \left[ {{{\cos }^{ - 1}}\dfrac{{\left( {1 - {2^{2x}}} \right)}}{{\left( {1 + {2^{2x}}} \right)}}} \right]\]
Let us assume \[{2^x} = \tan \theta \], then the function becomes
\[f(x) = \sin \left[ {{{\cos }^{ - 1}}\dfrac{{\left( {1 - {{\tan }^2}\theta } \right)}}{{\left( {1 + {{\tan }^2}\theta } \right)}}} \right]\]
We know that \[\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }} = \cos 2\theta \], on substituting this in function, function becomes
\[
f(x) = \sin \left[ {{{\cos }^{ - 1}}\cos 2\theta } \right] \\
= \sin 2\theta \\
\]
We know that \[\sin 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}\], so on substituting this in function, we get function as
\[
f(x) = \sin 2\theta \\
= \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} \\
\]
On substituting the value of \[\tan \theta \]as \[{2^x}\], we get
\[
f(x) = \dfrac{{2 \times {2^x}}}{{1 + {2^{2x}}}} \\
= 2 \times \dfrac{{{2^x}}}{{1 + {4^x}}} \\
\]
So, we will now be finding the first derivative of function, so on differentiating the function i.e., on using \[d(\dfrac{u}{v}) = \dfrac{{u'v - uv'}}{{{v^2}}}\], we get
\[
f'(x) = 2 \times \dfrac{{\left( {\dfrac{d}{{dx}}({2^x})(1 + {4^x}) - ({2^x})\dfrac{d}{{dx}}(1 + {4^x})} \right)}}{{{{(1 + {4^x})}^2}}} \\
= 2 \times \dfrac{{{2^x}(1 + {4^x})\ln 2 - {2^x}({4^x})\ln 4}}{{{{(1 + {4^x})}^2}}} \\
= 2 \times \dfrac{{{2^x}(1 + {4^x})\ln 2 - {2^x}({4^x})\ln {2^2}}}{{{{(1 + {4^x})}^2}}} \\
= 2 \times \dfrac{{{2^x}(1 + {4^x})\ln 2 - {2^x} \times 2 \times ({4^x})\ln 2}}{{{{(1 + {4^x})}^2}}} \\
\]
On substituting \[x = 1\], we get
\[
f'(1) = 2 \times \dfrac{{{2^1}(1 + {4^1})\ln 2 - {2^1} \times 2 \times ({4^1})\ln 2}}{{{{(1 + {4^1})}^2}}} \\
= 2 \times \dfrac{{2(5)\ln 2 - 2 \times 2 \times (4)ln2}}{{{{(5)}^2}}} \\
= \dfrac{{20\ln 2 - 32ln2}}{{25}} \\
= \dfrac{{ - 12\ln 2}}{{25}} \\
\]
Now, it is given that the first derivative of function is \[\left( {\dfrac{{ - b}}{a}} \right){\log _e}2\]when \[x = 1\].
So, on comparing \[\left( {\dfrac{{ - b}}{a}} \right){\log _e}2\] with above obtained value of first derivative of function, we get
\[
a = 25 \\
b = 12 \\
\]
Now, on putting this value in \[\left| {{a^2} - {b^2}} \right|\], we get
\[
{\left| {{a^2} - {b^2}} \right|_{\min }} = \left| {{{25}^2} - {{12}^2}} \right| \\
= \left| {625 - 144} \right| \\
= 481 \\
\]
Therefore the minimum value of \[\left| {{a^2} - {b^2}} \right|\] is \[481\].
Note : Here, students often make mistake while using formulae \[\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}\], \[\sin 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}\]. They often get confused with these formulae and write \[\sin 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}\],\[\cos 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}\]which is wrong. They should use \[\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}\] , \[\sin 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}\] , this formula only.
Formula used: Following formulas will be useful for solving this question
\[
\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }} \\
\sin 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} \\
\]
\[d(\dfrac{u}{v}) = \dfrac{{u'v - uv'}}{{{v^2}}}\]
\[d({a^x}) = {a^x}\ln a\]
Complete step-by-step Solution :
We are given function \[f(x) = \sin \left[ {{{\cos }^{ - 1}}\dfrac{{\left( {1 - {2^{2x}}} \right)}}{{\left( {1 + {2^{2x}}} \right)}}} \right]\]
Let us assume \[{2^x} = \tan \theta \], then the function becomes
\[f(x) = \sin \left[ {{{\cos }^{ - 1}}\dfrac{{\left( {1 - {{\tan }^2}\theta } \right)}}{{\left( {1 + {{\tan }^2}\theta } \right)}}} \right]\]
We know that \[\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }} = \cos 2\theta \], on substituting this in function, function becomes
\[
f(x) = \sin \left[ {{{\cos }^{ - 1}}\cos 2\theta } \right] \\
= \sin 2\theta \\
\]
We know that \[\sin 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}\], so on substituting this in function, we get function as
\[
f(x) = \sin 2\theta \\
= \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} \\
\]
On substituting the value of \[\tan \theta \]as \[{2^x}\], we get
\[
f(x) = \dfrac{{2 \times {2^x}}}{{1 + {2^{2x}}}} \\
= 2 \times \dfrac{{{2^x}}}{{1 + {4^x}}} \\
\]
So, we will now be finding the first derivative of function, so on differentiating the function i.e., on using \[d(\dfrac{u}{v}) = \dfrac{{u'v - uv'}}{{{v^2}}}\], we get
\[
f'(x) = 2 \times \dfrac{{\left( {\dfrac{d}{{dx}}({2^x})(1 + {4^x}) - ({2^x})\dfrac{d}{{dx}}(1 + {4^x})} \right)}}{{{{(1 + {4^x})}^2}}} \\
= 2 \times \dfrac{{{2^x}(1 + {4^x})\ln 2 - {2^x}({4^x})\ln 4}}{{{{(1 + {4^x})}^2}}} \\
= 2 \times \dfrac{{{2^x}(1 + {4^x})\ln 2 - {2^x}({4^x})\ln {2^2}}}{{{{(1 + {4^x})}^2}}} \\
= 2 \times \dfrac{{{2^x}(1 + {4^x})\ln 2 - {2^x} \times 2 \times ({4^x})\ln 2}}{{{{(1 + {4^x})}^2}}} \\
\]
On substituting \[x = 1\], we get
\[
f'(1) = 2 \times \dfrac{{{2^1}(1 + {4^1})\ln 2 - {2^1} \times 2 \times ({4^1})\ln 2}}{{{{(1 + {4^1})}^2}}} \\
= 2 \times \dfrac{{2(5)\ln 2 - 2 \times 2 \times (4)ln2}}{{{{(5)}^2}}} \\
= \dfrac{{20\ln 2 - 32ln2}}{{25}} \\
= \dfrac{{ - 12\ln 2}}{{25}} \\
\]
Now, it is given that the first derivative of function is \[\left( {\dfrac{{ - b}}{a}} \right){\log _e}2\]when \[x = 1\].
So, on comparing \[\left( {\dfrac{{ - b}}{a}} \right){\log _e}2\] with above obtained value of first derivative of function, we get
\[
a = 25 \\
b = 12 \\
\]
Now, on putting this value in \[\left| {{a^2} - {b^2}} \right|\], we get
\[
{\left| {{a^2} - {b^2}} \right|_{\min }} = \left| {{{25}^2} - {{12}^2}} \right| \\
= \left| {625 - 144} \right| \\
= 481 \\
\]
Therefore the minimum value of \[\left| {{a^2} - {b^2}} \right|\] is \[481\].
Note : Here, students often make mistake while using formulae \[\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}\], \[\sin 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}\]. They often get confused with these formulae and write \[\sin 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}\],\[\cos 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}\]which is wrong. They should use \[\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}\] , \[\sin 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}\] , this formula only.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges

NEET Total Marks 2025
