
If $f\left( x \right) = \left( {{{\log }_{\cot x}}\tan x} \right){\left( {{{\log }_{\tan x}}\cot x} \right)^{ - 1}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$ then $f'\left( 1 \right)$ is
1. $0$
2. $ - 2$
3. $\dfrac{1}{{\sqrt 3 }}$
4. $\sqrt 3 $
Answer
216k+ views
Hint: Here, start solving the given function by using logarithm formulas to open the first term of function use ${\log _a}b = \dfrac{{\log b}}{{\log a}}$ and $\log \left( {\dfrac{1}{a}} \right) = - \log a$ solve further and to solve the ${\tan ^{ - 1}}$ term put $x = 2\sin \theta $. Lastly, differentiate the required term with respect to $x$ and find $f'\left( 1 \right)$ at $x = 1$.
Formula used:
Logarithm formula –
${\log _a}b = \dfrac{{\log b}}{{\log a}}$
$\log \left( {\dfrac{1}{a}} \right) = - \log a$
Derivative of inverse –
$\dfrac{d}{{dx}}{\sin ^{ - 1}}\theta = \dfrac{1}{{\sqrt {1 - {x^2}} }}$
Complete step by step solution:
Given that,
$f\left( x \right) = \left( {{{\log }_{\cot x}}\tan x} \right){\left( {{{\log }_{\tan x}}\cot x} \right)^{ - 1}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = \dfrac{{\log \tan x}}{{\log \cot x}}{\left( {\dfrac{{\log \cot x}}{{\log \tan x}}} \right)^{ - 1}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = \dfrac{{\log \tan x}}{{\log \cot x}} \times \dfrac{{\log \tan x}}{{\log \cot x}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = \dfrac{{\log \tan x}}{{\log \left( {\dfrac{1}{{\tan x}}} \right)}} \times \dfrac{{\log \tan x}}{{\log \left( {\dfrac{1}{{\tan x}}} \right)}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = \dfrac{{\log \tan x}}{{\left( { - \log \tan x} \right)}} \times \dfrac{{\log \tan x}}{{\left( { - \log \tan x} \right)}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = 1 + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
Put $x = 2\sin \theta \Rightarrow \theta = {\sin ^{ - 1}}\dfrac{x}{2}$
$ = 1 + {\tan ^{ - 1}}\left( {\dfrac{{2\sin \theta }}{{\sqrt {4 - {{\left( {2\sin \theta } \right)}^2}} }}} \right)$
$ = 1 + {\tan ^{ - 1}}\left( {\dfrac{{2\sin \theta }}{{2\sqrt {1 - {{\sin }^2}\theta } }}} \right)$
$ = 1 + {\tan ^{ - 1}}\left( {\dfrac{{2\sin \theta }}{{2\sqrt {{{\cos }^2}\theta } }}} \right)$
$ = 1 + {\tan ^{ - 1}}\left( {\tan \theta } \right)$
$ = 1 + \theta $
$ = 1 + {\sin ^{ - 1}}\dfrac{x}{2} - - - - - (1)$
Differentiate equation (1) with respect to $x$
$f'(x) = \dfrac{1}{{\sqrt {1 - \dfrac{{{x^2}}}{4}} }} \times \dfrac{1}{2}$
$ = \dfrac{1}{{\sqrt {4 - {x^2}} }}$
At $x = 1$
$f'\left( 1 \right) = \dfrac{1}{{\sqrt {4 - {{\left( 1 \right)}^2}} }} = \dfrac{1}{{\sqrt 3 }}$
$ \Rightarrow $ Option (3) is the correct answer.
Note: In such questions, to solve the inverse term let $x$ be the trigonometric function so that the inverse will cancel, and it will be easier to find the derivative If you want to solve with the inverse only go ahead it will just make the calculation lengthy only. Also, while finding the derivative of the expression like $f(g(x))$always apply chain rule. First derive the whole function and then derive the function which is inside the original one.
Formula used:
Logarithm formula –
${\log _a}b = \dfrac{{\log b}}{{\log a}}$
$\log \left( {\dfrac{1}{a}} \right) = - \log a$
Derivative of inverse –
$\dfrac{d}{{dx}}{\sin ^{ - 1}}\theta = \dfrac{1}{{\sqrt {1 - {x^2}} }}$
Complete step by step solution:
Given that,
$f\left( x \right) = \left( {{{\log }_{\cot x}}\tan x} \right){\left( {{{\log }_{\tan x}}\cot x} \right)^{ - 1}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = \dfrac{{\log \tan x}}{{\log \cot x}}{\left( {\dfrac{{\log \cot x}}{{\log \tan x}}} \right)^{ - 1}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = \dfrac{{\log \tan x}}{{\log \cot x}} \times \dfrac{{\log \tan x}}{{\log \cot x}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = \dfrac{{\log \tan x}}{{\log \left( {\dfrac{1}{{\tan x}}} \right)}} \times \dfrac{{\log \tan x}}{{\log \left( {\dfrac{1}{{\tan x}}} \right)}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = \dfrac{{\log \tan x}}{{\left( { - \log \tan x} \right)}} \times \dfrac{{\log \tan x}}{{\left( { - \log \tan x} \right)}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = 1 + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
Put $x = 2\sin \theta \Rightarrow \theta = {\sin ^{ - 1}}\dfrac{x}{2}$
$ = 1 + {\tan ^{ - 1}}\left( {\dfrac{{2\sin \theta }}{{\sqrt {4 - {{\left( {2\sin \theta } \right)}^2}} }}} \right)$
$ = 1 + {\tan ^{ - 1}}\left( {\dfrac{{2\sin \theta }}{{2\sqrt {1 - {{\sin }^2}\theta } }}} \right)$
$ = 1 + {\tan ^{ - 1}}\left( {\dfrac{{2\sin \theta }}{{2\sqrt {{{\cos }^2}\theta } }}} \right)$
$ = 1 + {\tan ^{ - 1}}\left( {\tan \theta } \right)$
$ = 1 + \theta $
$ = 1 + {\sin ^{ - 1}}\dfrac{x}{2} - - - - - (1)$
Differentiate equation (1) with respect to $x$
$f'(x) = \dfrac{1}{{\sqrt {1 - \dfrac{{{x^2}}}{4}} }} \times \dfrac{1}{2}$
$ = \dfrac{1}{{\sqrt {4 - {x^2}} }}$
At $x = 1$
$f'\left( 1 \right) = \dfrac{1}{{\sqrt {4 - {{\left( 1 \right)}^2}} }} = \dfrac{1}{{\sqrt 3 }}$
$ \Rightarrow $ Option (3) is the correct answer.
Note: In such questions, to solve the inverse term let $x$ be the trigonometric function so that the inverse will cancel, and it will be easier to find the derivative If you want to solve with the inverse only go ahead it will just make the calculation lengthy only. Also, while finding the derivative of the expression like $f(g(x))$always apply chain rule. First derive the whole function and then derive the function which is inside the original one.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

