
If $f\left( x \right) = \left( {{{\log }_{\cot x}}\tan x} \right){\left( {{{\log }_{\tan x}}\cot x} \right)^{ - 1}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$ then $f'\left( 1 \right)$ is
1. $0$
2. $ - 2$
3. $\dfrac{1}{{\sqrt 3 }}$
4. $\sqrt 3 $
Answer
163.5k+ views
Hint: Here, start solving the given function by using logarithm formulas to open the first term of function use ${\log _a}b = \dfrac{{\log b}}{{\log a}}$ and $\log \left( {\dfrac{1}{a}} \right) = - \log a$ solve further and to solve the ${\tan ^{ - 1}}$ term put $x = 2\sin \theta $. Lastly, differentiate the required term with respect to $x$ and find $f'\left( 1 \right)$ at $x = 1$.
Formula used:
Logarithm formula –
${\log _a}b = \dfrac{{\log b}}{{\log a}}$
$\log \left( {\dfrac{1}{a}} \right) = - \log a$
Derivative of inverse –
$\dfrac{d}{{dx}}{\sin ^{ - 1}}\theta = \dfrac{1}{{\sqrt {1 - {x^2}} }}$
Complete step by step solution:
Given that,
$f\left( x \right) = \left( {{{\log }_{\cot x}}\tan x} \right){\left( {{{\log }_{\tan x}}\cot x} \right)^{ - 1}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = \dfrac{{\log \tan x}}{{\log \cot x}}{\left( {\dfrac{{\log \cot x}}{{\log \tan x}}} \right)^{ - 1}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = \dfrac{{\log \tan x}}{{\log \cot x}} \times \dfrac{{\log \tan x}}{{\log \cot x}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = \dfrac{{\log \tan x}}{{\log \left( {\dfrac{1}{{\tan x}}} \right)}} \times \dfrac{{\log \tan x}}{{\log \left( {\dfrac{1}{{\tan x}}} \right)}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = \dfrac{{\log \tan x}}{{\left( { - \log \tan x} \right)}} \times \dfrac{{\log \tan x}}{{\left( { - \log \tan x} \right)}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = 1 + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
Put $x = 2\sin \theta \Rightarrow \theta = {\sin ^{ - 1}}\dfrac{x}{2}$
$ = 1 + {\tan ^{ - 1}}\left( {\dfrac{{2\sin \theta }}{{\sqrt {4 - {{\left( {2\sin \theta } \right)}^2}} }}} \right)$
$ = 1 + {\tan ^{ - 1}}\left( {\dfrac{{2\sin \theta }}{{2\sqrt {1 - {{\sin }^2}\theta } }}} \right)$
$ = 1 + {\tan ^{ - 1}}\left( {\dfrac{{2\sin \theta }}{{2\sqrt {{{\cos }^2}\theta } }}} \right)$
$ = 1 + {\tan ^{ - 1}}\left( {\tan \theta } \right)$
$ = 1 + \theta $
$ = 1 + {\sin ^{ - 1}}\dfrac{x}{2} - - - - - (1)$
Differentiate equation (1) with respect to $x$
$f'(x) = \dfrac{1}{{\sqrt {1 - \dfrac{{{x^2}}}{4}} }} \times \dfrac{1}{2}$
$ = \dfrac{1}{{\sqrt {4 - {x^2}} }}$
At $x = 1$
$f'\left( 1 \right) = \dfrac{1}{{\sqrt {4 - {{\left( 1 \right)}^2}} }} = \dfrac{1}{{\sqrt 3 }}$
$ \Rightarrow $ Option (3) is the correct answer.
Note: In such questions, to solve the inverse term let $x$ be the trigonometric function so that the inverse will cancel, and it will be easier to find the derivative If you want to solve with the inverse only go ahead it will just make the calculation lengthy only. Also, while finding the derivative of the expression like $f(g(x))$always apply chain rule. First derive the whole function and then derive the function which is inside the original one.
Formula used:
Logarithm formula –
${\log _a}b = \dfrac{{\log b}}{{\log a}}$
$\log \left( {\dfrac{1}{a}} \right) = - \log a$
Derivative of inverse –
$\dfrac{d}{{dx}}{\sin ^{ - 1}}\theta = \dfrac{1}{{\sqrt {1 - {x^2}} }}$
Complete step by step solution:
Given that,
$f\left( x \right) = \left( {{{\log }_{\cot x}}\tan x} \right){\left( {{{\log }_{\tan x}}\cot x} \right)^{ - 1}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = \dfrac{{\log \tan x}}{{\log \cot x}}{\left( {\dfrac{{\log \cot x}}{{\log \tan x}}} \right)^{ - 1}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = \dfrac{{\log \tan x}}{{\log \cot x}} \times \dfrac{{\log \tan x}}{{\log \cot x}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = \dfrac{{\log \tan x}}{{\log \left( {\dfrac{1}{{\tan x}}} \right)}} \times \dfrac{{\log \tan x}}{{\log \left( {\dfrac{1}{{\tan x}}} \right)}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = \dfrac{{\log \tan x}}{{\left( { - \log \tan x} \right)}} \times \dfrac{{\log \tan x}}{{\left( { - \log \tan x} \right)}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = 1 + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
Put $x = 2\sin \theta \Rightarrow \theta = {\sin ^{ - 1}}\dfrac{x}{2}$
$ = 1 + {\tan ^{ - 1}}\left( {\dfrac{{2\sin \theta }}{{\sqrt {4 - {{\left( {2\sin \theta } \right)}^2}} }}} \right)$
$ = 1 + {\tan ^{ - 1}}\left( {\dfrac{{2\sin \theta }}{{2\sqrt {1 - {{\sin }^2}\theta } }}} \right)$
$ = 1 + {\tan ^{ - 1}}\left( {\dfrac{{2\sin \theta }}{{2\sqrt {{{\cos }^2}\theta } }}} \right)$
$ = 1 + {\tan ^{ - 1}}\left( {\tan \theta } \right)$
$ = 1 + \theta $
$ = 1 + {\sin ^{ - 1}}\dfrac{x}{2} - - - - - (1)$
Differentiate equation (1) with respect to $x$
$f'(x) = \dfrac{1}{{\sqrt {1 - \dfrac{{{x^2}}}{4}} }} \times \dfrac{1}{2}$
$ = \dfrac{1}{{\sqrt {4 - {x^2}} }}$
At $x = 1$
$f'\left( 1 \right) = \dfrac{1}{{\sqrt {4 - {{\left( 1 \right)}^2}} }} = \dfrac{1}{{\sqrt 3 }}$
$ \Rightarrow $ Option (3) is the correct answer.
Note: In such questions, to solve the inverse term let $x$ be the trigonometric function so that the inverse will cancel, and it will be easier to find the derivative If you want to solve with the inverse only go ahead it will just make the calculation lengthy only. Also, while finding the derivative of the expression like $f(g(x))$always apply chain rule. First derive the whole function and then derive the function which is inside the original one.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
