
If \[f\left( x \right) = {\left[ {\dfrac{{\left( {a + x} \right)}}{{\left( {b + x} \right)}}} \right]^{a + b + 2x}}\] , then find the value of \[f'\left( 0 \right)\].
A. \[2log\dfrac{a}{b} + \dfrac{{{b^2} - {a^2}}}{{ab}}\]
B. \[{\left( {\dfrac{a}{b}} \right)^{a + b}}\left( {2log\dfrac{a}{b} + \dfrac{{{b^2} - {a^2}}}{{ab}}} \right)\]
C. \[{\left( {\dfrac{a}{b}} \right)^{a + b}}\left( {\dfrac{{{b^2} - {a^2}}}{{ab}}} \right)\]
D. None of these
Answer
164.1k+ views
Hint: In the question, the given equation is an exponential equation. To remove the exponent from the equation, we will apply the \[\log \] on both sides. Then we will find the derivative of the new logarithmic equation with respect to \[x\]. By substituting \[x = 0\] in the differential equation, we will find the value of \[f'\left( 0 \right)\].
Formula Used:\[lo{g_m}{\left( a \right)^n} = nlo{g_m}\left( a \right)\]
\[lo{g_m}\left( {\dfrac{a}{b}} \right) = lo{g_m}\left( a \right) - lo{g_m}\left( b \right)\]
\[\dfrac{d}{{dx}}\left( {log{x^n}} \right) = \dfrac{1}{{{x^n}}}\dfrac{d}{{dx}}\left( {{x^n}} \right) = \dfrac{n}{x}\]
Chain rule: \[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
\[\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\]
Complete step-by-step solution:The given equation is \[f\left( x \right) = {\left[ {\dfrac{{\left( {a + x} \right)}}{{\left( {b + x} \right)}}} \right]^{a + b + 2x}}\] ……..(1)
Let’s take the \[\log \] on both sides of the equation.
\[logf\left( x \right) = \left( {a + b + 2x} \right)log\left[ {\dfrac{{\left( {a + x} \right)}}{{\left( {b + x} \right)}}} \right]\]
Simplify the above equation
\[logf\left( x \right) = \left( {a + b + 2x} \right)\left[ {log\left( {a + x} \right) - log\left( {b + x} \right)} \right]\]
Let’s calculate the derivative of the above equation with respect to \[x\].
Now we will apply \[\dfrac{d}{{dx}}\left( {log{x^n}} \right) = \dfrac{1}{{{x^n}}}\dfrac{d}{{dx}}\left( {{x^n}} \right) = \dfrac{n}{x}\] on left-hand side and chain rule on right-hand side.
\[\dfrac{1}{{f\left( x \right)}}f'\left( x \right) = \left( {a + b + 2x} \right)\left[ {\dfrac{1}{{\left( {a + x} \right)}} - \dfrac{1}{{\left( {b + x} \right)}}} \right] + 2\left[ {log\left( {a + x} \right) - log\left( {b + x} \right)} \right]\] \ …..(2)
Now substitute \[x = 0\] in the equation (1).
\[f\left( 0 \right) = {\left[ {\dfrac{{\left( {a + 0} \right)}}{{\left( {b + 0} \right)}}} \right]^{a + b + 2\left( 0 \right)}}\]
\[ \Rightarrow \]\[f\left( 0 \right) = {\left( {\dfrac{a}{b}} \right)^{a + b}}\]
Substitute \[x = 0\] in the equation (2).
\[\dfrac{{f'\left( 0 \right)}}{{f\left( 0 \right)}} = \left( {a + b + 2\left( 0 \right)} \right)\left[ {\dfrac{1}{{\left( {a + 0} \right)}} - \dfrac{1}{{\left( {b + 0} \right)}}} \right] + 2\left[ {log\left( {a + 0} \right) - log\left( {b + 0} \right)} \right]\]
Simplify the above equation
\[\dfrac{{f'\left( 0 \right)}}{{f\left( 0 \right)}} = \left( {a + b} \right)\left[ {\dfrac{1}{a} - \dfrac{1}{b}} \right] + 2\left[ {log\left( a \right) - log\left( b \right)} \right]\]
Now we will apply the formulas \[\dfrac{a}{b} - \dfrac{c}{d} = \dfrac{{ad - bc}}{{bd}}\] and \[lo{g_m}\left( a \right) - lo{g_m}\left( b \right) = lo{g_m}\left( {\dfrac{a}{b}} \right)\].
\[\dfrac{{f'\left( 0 \right)}}{{f\left( 0 \right)}} = \left( {a + b} \right)\left[ {\dfrac{{b - a}}{{ab}}} \right] + 2log\left( {\dfrac{a}{b}} \right)\]
Now we will apply the formula \[\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\].
\[\dfrac{{f'\left( 0 \right)}}{{f\left( 0 \right)}} = \dfrac{{{b^2} - {a^2}}}{{ab}} + 2log\left( {\dfrac{a}{b}} \right)\]
Multiply both sides of the above equation by \[f\left( 0 \right)\].
\[f'\left( 0 \right) = f\left( 0 \right)\left( {\dfrac{{{b^2} - {a^2}}}{{ab}} + 2log\left( {\dfrac{a}{b}} \right)} \right)\]
\[ \Rightarrow \]\[f'\left( 0 \right) = {\left( {\dfrac{a}{b}} \right)^{a + b}}\left( {\dfrac{{{b^2} - {a^2}}}{{ab}} + 2log\left( {\dfrac{a}{b}} \right)} \right)\] [since \[f\left( 0 \right) = {\left( {\dfrac{a}{b}} \right)^{a + b}}\]]
Hence the correct option is option B.
Note: Students are often confused with the formula \[\dfrac{d}{{dx}}\left( {log{x^n}} \right) = \dfrac{1}{{{x^n}}}\] and \[\dfrac{d}{{dx}}\left( {log{x^n}} \right) = \dfrac{1}{{{x^n}}}\dfrac{d}{{dx}}\left( {{x^n}} \right) = \dfrac{n}{x}\]. But the correct formula is \[\dfrac{d}{{dx}}\left( {log{x^n}} \right) = \dfrac{n}{x}\]. Because we also have to multiply the derivative of \[log{x^n}\]by the derivative of the term \[{x^n}\].
Formula Used:\[lo{g_m}{\left( a \right)^n} = nlo{g_m}\left( a \right)\]
\[lo{g_m}\left( {\dfrac{a}{b}} \right) = lo{g_m}\left( a \right) - lo{g_m}\left( b \right)\]
\[\dfrac{d}{{dx}}\left( {log{x^n}} \right) = \dfrac{1}{{{x^n}}}\dfrac{d}{{dx}}\left( {{x^n}} \right) = \dfrac{n}{x}\]
Chain rule: \[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
\[\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\]
Complete step-by-step solution:The given equation is \[f\left( x \right) = {\left[ {\dfrac{{\left( {a + x} \right)}}{{\left( {b + x} \right)}}} \right]^{a + b + 2x}}\] ……..(1)
Let’s take the \[\log \] on both sides of the equation.
\[logf\left( x \right) = \left( {a + b + 2x} \right)log\left[ {\dfrac{{\left( {a + x} \right)}}{{\left( {b + x} \right)}}} \right]\]
Simplify the above equation
\[logf\left( x \right) = \left( {a + b + 2x} \right)\left[ {log\left( {a + x} \right) - log\left( {b + x} \right)} \right]\]
Let’s calculate the derivative of the above equation with respect to \[x\].
Now we will apply \[\dfrac{d}{{dx}}\left( {log{x^n}} \right) = \dfrac{1}{{{x^n}}}\dfrac{d}{{dx}}\left( {{x^n}} \right) = \dfrac{n}{x}\] on left-hand side and chain rule on right-hand side.
\[\dfrac{1}{{f\left( x \right)}}f'\left( x \right) = \left( {a + b + 2x} \right)\left[ {\dfrac{1}{{\left( {a + x} \right)}} - \dfrac{1}{{\left( {b + x} \right)}}} \right] + 2\left[ {log\left( {a + x} \right) - log\left( {b + x} \right)} \right]\] \ …..(2)
Now substitute \[x = 0\] in the equation (1).
\[f\left( 0 \right) = {\left[ {\dfrac{{\left( {a + 0} \right)}}{{\left( {b + 0} \right)}}} \right]^{a + b + 2\left( 0 \right)}}\]
\[ \Rightarrow \]\[f\left( 0 \right) = {\left( {\dfrac{a}{b}} \right)^{a + b}}\]
Substitute \[x = 0\] in the equation (2).
\[\dfrac{{f'\left( 0 \right)}}{{f\left( 0 \right)}} = \left( {a + b + 2\left( 0 \right)} \right)\left[ {\dfrac{1}{{\left( {a + 0} \right)}} - \dfrac{1}{{\left( {b + 0} \right)}}} \right] + 2\left[ {log\left( {a + 0} \right) - log\left( {b + 0} \right)} \right]\]
Simplify the above equation
\[\dfrac{{f'\left( 0 \right)}}{{f\left( 0 \right)}} = \left( {a + b} \right)\left[ {\dfrac{1}{a} - \dfrac{1}{b}} \right] + 2\left[ {log\left( a \right) - log\left( b \right)} \right]\]
Now we will apply the formulas \[\dfrac{a}{b} - \dfrac{c}{d} = \dfrac{{ad - bc}}{{bd}}\] and \[lo{g_m}\left( a \right) - lo{g_m}\left( b \right) = lo{g_m}\left( {\dfrac{a}{b}} \right)\].
\[\dfrac{{f'\left( 0 \right)}}{{f\left( 0 \right)}} = \left( {a + b} \right)\left[ {\dfrac{{b - a}}{{ab}}} \right] + 2log\left( {\dfrac{a}{b}} \right)\]
Now we will apply the formula \[\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\].
\[\dfrac{{f'\left( 0 \right)}}{{f\left( 0 \right)}} = \dfrac{{{b^2} - {a^2}}}{{ab}} + 2log\left( {\dfrac{a}{b}} \right)\]
Multiply both sides of the above equation by \[f\left( 0 \right)\].
\[f'\left( 0 \right) = f\left( 0 \right)\left( {\dfrac{{{b^2} - {a^2}}}{{ab}} + 2log\left( {\dfrac{a}{b}} \right)} \right)\]
\[ \Rightarrow \]\[f'\left( 0 \right) = {\left( {\dfrac{a}{b}} \right)^{a + b}}\left( {\dfrac{{{b^2} - {a^2}}}{{ab}} + 2log\left( {\dfrac{a}{b}} \right)} \right)\] [since \[f\left( 0 \right) = {\left( {\dfrac{a}{b}} \right)^{a + b}}\]]
Hence the correct option is option B.
Note: Students are often confused with the formula \[\dfrac{d}{{dx}}\left( {log{x^n}} \right) = \dfrac{1}{{{x^n}}}\] and \[\dfrac{d}{{dx}}\left( {log{x^n}} \right) = \dfrac{1}{{{x^n}}}\dfrac{d}{{dx}}\left( {{x^n}} \right) = \dfrac{n}{x}\]. But the correct formula is \[\dfrac{d}{{dx}}\left( {log{x^n}} \right) = \dfrac{n}{x}\]. Because we also have to multiply the derivative of \[log{x^n}\]by the derivative of the term \[{x^n}\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges
