
If \[f\left( x \right) = \int_0^x {{e^{{t^2}}}\left( {t - 2} \right)\left( {t - 3} \right)dt} \] for all \[x \in \left( {0,\infty } \right)\]. Which of the following is /are true?
A. \[f\] has a local maximum at \[x = 2\].
B. \[f\] is decreasing on \[\left( {2,3} \right)\].
C. There exists some \[c \in \left( {0,\infty } \right)\] such that \[f''\left( c \right) = 0\]
D. \[f\] has a local minimum at \[x = 3\]
E. All
Answer
217.5k+ views
Hint: First we find the \[f'\left( x \right)\] from the integration. Then we will calculate the second-order derivative of \[f\left( x \right)\]. Then find the critical point by equating \[f'\left( x \right)\] with zero. Then apply the maxima and minima concepts to find the local maximum and local minimum. Then we will apply Rolle’s theorem on \[f'\left( x \right)\].
Formula used:
The derivative of the integration \[g\left( x \right) = \int_0^x {f\left( t \right)dt} \] is \[g'\left( x \right) = f\left( x \right)\].
If \[f''\left( x \right) > 0\] at \[x = a\], then the function \[f\left( x \right)\] has local minima at \[x = a\].
If \[f''\left( x \right) < 0\] at \[x = a\], then the function \[f\left( x \right)\] has local maxima at \[x = a\].
Rolle’s Theorem: If a function \[f\] is continuous on the closed interval \[\left[ {a,b} \right]\]and differentiable on the open interval \[\left( {a,b} \right)\] such that \[f\left( a \right) = f\left( b \right)\], then \[f'\left( x \right) = 0\] for some \[x\] with \[a \le x \le b\].
Complete step by step solution:
Given integration is \[f\left( x \right) = \int_0^x {{e^{{t^2}}}\left( {t - 2} \right)\left( {t - 3} \right)dt} \].
We have to find the derivative of \[f\left( x \right)\].
\[f'\left( x \right) = {e^{{x^2}}}\left( {x - 2} \right)\left( {x - 3} \right)\]
Again, differentiate the above equation with respect to x.
\[f''\left( x \right) = \dfrac{d}{{dx}}\left[ {{e^{{x^2}}}\left( {x - 2} \right)\left( {x - 3} \right)} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left( {x - 2} \right)\dfrac{d}{{dx}}\left( {x - 3} \right) + {e^{{x^2}}}\left( {x - 3} \right)\dfrac{d}{{dx}}\left( {x - 2} \right) + \left( {x - 2} \right)\left( {x - 3} \right)\dfrac{d}{{dx}}\left[ {{e^{{x^2}}}} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left( {x - 2} \right) + {e^{{x^2}}}\left( {x - 3} \right) + \left( {x - 2} \right)\left( {x - 3} \right){e^{{x^2}}}\dfrac{d}{{dx}}\left[ {{x^2}} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left( {x - 2} \right) + {e^{{x^2}}}\left( {x - 3} \right) + \left( {x - 2} \right)\left( {x - 3} \right){e^{{x^2}}}\left( {2x} \right)\]
Simplify the above equation:
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left[ {\left( {x - 2} \right) + \left( {x - 3} \right) + 2x\left( {x - 2} \right)\left( {x - 3} \right)} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left[ {x - 2 + x - 3 + 2x\left( {{x^2} - 5x + 6} \right)} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left[ {2x - 5 + 2{x^3} - 10{x^2} + 12x} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left[ {2{x^3} - 10{x^2} + 14x - 5} \right]\]
Equate \[f'\left( x \right)\] equal to zero to find the critical point.
\[{e^{{x^2}}}\left( {x - 2} \right)\left( {x - 3} \right) = 0\]
Equate each factor with zero
\[\left( {x - 2} \right) = 0\]
\[ \Rightarrow x = 2\]
\[\left( {x - 3} \right) = 0\]
\[ \Rightarrow x = 3\]
The critical points of \[f\left( x \right)\] are 2, 3.
Substitute \[x = 2\] in \[f''\left( x \right) = {e^{{x^2}}}\left[ {2{x^3} - 10{x^2} + 14x - 5} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{2^2}}}\left[ {2 \cdot {2^3} - 10 \cdot {2^2} + 14 \cdot 2 - 5} \right]\]
\[ \Rightarrow f''\left( x \right) = - {e^{{2^2}}} < 0\]
Thus \[f\left( x \right)\] has local maximum at \[x = 2\].
Substitute \[x = 3\] in \[f''\left( x \right) = {e^{{x^2}}}\left[ {2{x^3} - 10{x^2} + 14x - 5} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{3^2}}}\left[ {2 \cdot {3^3} - 10 \cdot {3^2} + 14 \cdot 3 - 5} \right]\]
\[ \Rightarrow f''\left( x \right) = 11{e^{{2^2}}} > 0\]
Thus \[f\left( x \right)\] has local minima at \[x = 3\].
Check whether the function is increasing or decreasing in \[\left( {2,3} \right)\].
The value of \[\left( {x - 3} \right)\] must be negative when \[x \in \left( {2,3} \right)\].
The value of \[\left( {x - 2} \right)\] must be positive when \[x \in \left( {2,3} \right)\].
The value of \[{e^{{x^2}}}\] must be positive when \[x \in \left( {2,3} \right)\].
So, the product \[{e^{{x^2}}}\left( {x - 2} \right)\left( {x - 3} \right)\] is a negative number.
Thus \[f'\left( x \right) < 0\] for all \[x \in \left( {2,3} \right)\].
So, the function \[f\left( x \right)\] is decreasing in \[x \in \left( {2,3} \right)\].
At \[x = 2\], \[f'\left( x \right) = 0\] and at \[x = 3\], \[f'\left( x \right) = 0\].
So, \[f'\left( 2 \right) = f'\left( 3 \right)\]
Now apply Rolle’s theorem on \[f'\left( x \right)\].
Since \[f'\left( 2 \right) = f'\left( 3 \right)\], there exist \[c \in \left( {2,3} \right)\] such that \[f''\left( c \right) = 0\].
This implies there exist \[c \in \left( {0,\infty } \right)\] such that \[f''\left( c \right) = 0\].
Hence option E is the correct option.
Note: Students often do mark correct option C as they get there exist \[c \in \left( {2,3} \right)\] such that \[f''\left( c \right) = 0\]. But if \[c \in \left( {2,3} \right)\] which means \[c\] also belongs to \[\left( {0,\infty } \right)\]. So option C also correct.
Formula used:
The derivative of the integration \[g\left( x \right) = \int_0^x {f\left( t \right)dt} \] is \[g'\left( x \right) = f\left( x \right)\].
If \[f''\left( x \right) > 0\] at \[x = a\], then the function \[f\left( x \right)\] has local minima at \[x = a\].
If \[f''\left( x \right) < 0\] at \[x = a\], then the function \[f\left( x \right)\] has local maxima at \[x = a\].
Rolle’s Theorem: If a function \[f\] is continuous on the closed interval \[\left[ {a,b} \right]\]and differentiable on the open interval \[\left( {a,b} \right)\] such that \[f\left( a \right) = f\left( b \right)\], then \[f'\left( x \right) = 0\] for some \[x\] with \[a \le x \le b\].
Complete step by step solution:
Given integration is \[f\left( x \right) = \int_0^x {{e^{{t^2}}}\left( {t - 2} \right)\left( {t - 3} \right)dt} \].
We have to find the derivative of \[f\left( x \right)\].
\[f'\left( x \right) = {e^{{x^2}}}\left( {x - 2} \right)\left( {x - 3} \right)\]
Again, differentiate the above equation with respect to x.
\[f''\left( x \right) = \dfrac{d}{{dx}}\left[ {{e^{{x^2}}}\left( {x - 2} \right)\left( {x - 3} \right)} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left( {x - 2} \right)\dfrac{d}{{dx}}\left( {x - 3} \right) + {e^{{x^2}}}\left( {x - 3} \right)\dfrac{d}{{dx}}\left( {x - 2} \right) + \left( {x - 2} \right)\left( {x - 3} \right)\dfrac{d}{{dx}}\left[ {{e^{{x^2}}}} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left( {x - 2} \right) + {e^{{x^2}}}\left( {x - 3} \right) + \left( {x - 2} \right)\left( {x - 3} \right){e^{{x^2}}}\dfrac{d}{{dx}}\left[ {{x^2}} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left( {x - 2} \right) + {e^{{x^2}}}\left( {x - 3} \right) + \left( {x - 2} \right)\left( {x - 3} \right){e^{{x^2}}}\left( {2x} \right)\]
Simplify the above equation:
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left[ {\left( {x - 2} \right) + \left( {x - 3} \right) + 2x\left( {x - 2} \right)\left( {x - 3} \right)} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left[ {x - 2 + x - 3 + 2x\left( {{x^2} - 5x + 6} \right)} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left[ {2x - 5 + 2{x^3} - 10{x^2} + 12x} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left[ {2{x^3} - 10{x^2} + 14x - 5} \right]\]
Equate \[f'\left( x \right)\] equal to zero to find the critical point.
\[{e^{{x^2}}}\left( {x - 2} \right)\left( {x - 3} \right) = 0\]
Equate each factor with zero
\[\left( {x - 2} \right) = 0\]
\[ \Rightarrow x = 2\]
\[\left( {x - 3} \right) = 0\]
\[ \Rightarrow x = 3\]
The critical points of \[f\left( x \right)\] are 2, 3.
Substitute \[x = 2\] in \[f''\left( x \right) = {e^{{x^2}}}\left[ {2{x^3} - 10{x^2} + 14x - 5} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{2^2}}}\left[ {2 \cdot {2^3} - 10 \cdot {2^2} + 14 \cdot 2 - 5} \right]\]
\[ \Rightarrow f''\left( x \right) = - {e^{{2^2}}} < 0\]
Thus \[f\left( x \right)\] has local maximum at \[x = 2\].
Substitute \[x = 3\] in \[f''\left( x \right) = {e^{{x^2}}}\left[ {2{x^3} - 10{x^2} + 14x - 5} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{3^2}}}\left[ {2 \cdot {3^3} - 10 \cdot {3^2} + 14 \cdot 3 - 5} \right]\]
\[ \Rightarrow f''\left( x \right) = 11{e^{{2^2}}} > 0\]
Thus \[f\left( x \right)\] has local minima at \[x = 3\].
Check whether the function is increasing or decreasing in \[\left( {2,3} \right)\].
The value of \[\left( {x - 3} \right)\] must be negative when \[x \in \left( {2,3} \right)\].
The value of \[\left( {x - 2} \right)\] must be positive when \[x \in \left( {2,3} \right)\].
The value of \[{e^{{x^2}}}\] must be positive when \[x \in \left( {2,3} \right)\].
So, the product \[{e^{{x^2}}}\left( {x - 2} \right)\left( {x - 3} \right)\] is a negative number.
Thus \[f'\left( x \right) < 0\] for all \[x \in \left( {2,3} \right)\].
So, the function \[f\left( x \right)\] is decreasing in \[x \in \left( {2,3} \right)\].
At \[x = 2\], \[f'\left( x \right) = 0\] and at \[x = 3\], \[f'\left( x \right) = 0\].
So, \[f'\left( 2 \right) = f'\left( 3 \right)\]
Now apply Rolle’s theorem on \[f'\left( x \right)\].
Since \[f'\left( 2 \right) = f'\left( 3 \right)\], there exist \[c \in \left( {2,3} \right)\] such that \[f''\left( c \right) = 0\].
This implies there exist \[c \in \left( {0,\infty } \right)\] such that \[f''\left( c \right) = 0\].
Hence option E is the correct option.
Note: Students often do mark correct option C as they get there exist \[c \in \left( {2,3} \right)\] such that \[f''\left( c \right) = 0\]. But if \[c \in \left( {2,3} \right)\] which means \[c\] also belongs to \[\left( {0,\infty } \right)\]. So option C also correct.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

