
If \[f\left( x \right) = \int_0^x {{e^{{t^2}}}\left( {t - 2} \right)\left( {t - 3} \right)dt} \] for all \[x \in \left( {0,\infty } \right)\]. Which of the following is /are true?
A. \[f\] has a local maximum at \[x = 2\].
B. \[f\] is decreasing on \[\left( {2,3} \right)\].
C. There exists some \[c \in \left( {0,\infty } \right)\] such that \[f''\left( c \right) = 0\]
D. \[f\] has a local minimum at \[x = 3\]
E. All
Answer
162.6k+ views
Hint: First we find the \[f'\left( x \right)\] from the integration. Then we will calculate the second-order derivative of \[f\left( x \right)\]. Then find the critical point by equating \[f'\left( x \right)\] with zero. Then apply the maxima and minima concepts to find the local maximum and local minimum. Then we will apply Rolle’s theorem on \[f'\left( x \right)\].
Formula used:
The derivative of the integration \[g\left( x \right) = \int_0^x {f\left( t \right)dt} \] is \[g'\left( x \right) = f\left( x \right)\].
If \[f''\left( x \right) > 0\] at \[x = a\], then the function \[f\left( x \right)\] has local minima at \[x = a\].
If \[f''\left( x \right) < 0\] at \[x = a\], then the function \[f\left( x \right)\] has local maxima at \[x = a\].
Rolle’s Theorem: If a function \[f\] is continuous on the closed interval \[\left[ {a,b} \right]\]and differentiable on the open interval \[\left( {a,b} \right)\] such that \[f\left( a \right) = f\left( b \right)\], then \[f'\left( x \right) = 0\] for some \[x\] with \[a \le x \le b\].
Complete step by step solution:
Given integration is \[f\left( x \right) = \int_0^x {{e^{{t^2}}}\left( {t - 2} \right)\left( {t - 3} \right)dt} \].
We have to find the derivative of \[f\left( x \right)\].
\[f'\left( x \right) = {e^{{x^2}}}\left( {x - 2} \right)\left( {x - 3} \right)\]
Again, differentiate the above equation with respect to x.
\[f''\left( x \right) = \dfrac{d}{{dx}}\left[ {{e^{{x^2}}}\left( {x - 2} \right)\left( {x - 3} \right)} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left( {x - 2} \right)\dfrac{d}{{dx}}\left( {x - 3} \right) + {e^{{x^2}}}\left( {x - 3} \right)\dfrac{d}{{dx}}\left( {x - 2} \right) + \left( {x - 2} \right)\left( {x - 3} \right)\dfrac{d}{{dx}}\left[ {{e^{{x^2}}}} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left( {x - 2} \right) + {e^{{x^2}}}\left( {x - 3} \right) + \left( {x - 2} \right)\left( {x - 3} \right){e^{{x^2}}}\dfrac{d}{{dx}}\left[ {{x^2}} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left( {x - 2} \right) + {e^{{x^2}}}\left( {x - 3} \right) + \left( {x - 2} \right)\left( {x - 3} \right){e^{{x^2}}}\left( {2x} \right)\]
Simplify the above equation:
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left[ {\left( {x - 2} \right) + \left( {x - 3} \right) + 2x\left( {x - 2} \right)\left( {x - 3} \right)} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left[ {x - 2 + x - 3 + 2x\left( {{x^2} - 5x + 6} \right)} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left[ {2x - 5 + 2{x^3} - 10{x^2} + 12x} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left[ {2{x^3} - 10{x^2} + 14x - 5} \right]\]
Equate \[f'\left( x \right)\] equal to zero to find the critical point.
\[{e^{{x^2}}}\left( {x - 2} \right)\left( {x - 3} \right) = 0\]
Equate each factor with zero
\[\left( {x - 2} \right) = 0\]
\[ \Rightarrow x = 2\]
\[\left( {x - 3} \right) = 0\]
\[ \Rightarrow x = 3\]
The critical points of \[f\left( x \right)\] are 2, 3.
Substitute \[x = 2\] in \[f''\left( x \right) = {e^{{x^2}}}\left[ {2{x^3} - 10{x^2} + 14x - 5} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{2^2}}}\left[ {2 \cdot {2^3} - 10 \cdot {2^2} + 14 \cdot 2 - 5} \right]\]
\[ \Rightarrow f''\left( x \right) = - {e^{{2^2}}} < 0\]
Thus \[f\left( x \right)\] has local maximum at \[x = 2\].
Substitute \[x = 3\] in \[f''\left( x \right) = {e^{{x^2}}}\left[ {2{x^3} - 10{x^2} + 14x - 5} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{3^2}}}\left[ {2 \cdot {3^3} - 10 \cdot {3^2} + 14 \cdot 3 - 5} \right]\]
\[ \Rightarrow f''\left( x \right) = 11{e^{{2^2}}} > 0\]
Thus \[f\left( x \right)\] has local minima at \[x = 3\].
Check whether the function is increasing or decreasing in \[\left( {2,3} \right)\].
The value of \[\left( {x - 3} \right)\] must be negative when \[x \in \left( {2,3} \right)\].
The value of \[\left( {x - 2} \right)\] must be positive when \[x \in \left( {2,3} \right)\].
The value of \[{e^{{x^2}}}\] must be positive when \[x \in \left( {2,3} \right)\].
So, the product \[{e^{{x^2}}}\left( {x - 2} \right)\left( {x - 3} \right)\] is a negative number.
Thus \[f'\left( x \right) < 0\] for all \[x \in \left( {2,3} \right)\].
So, the function \[f\left( x \right)\] is decreasing in \[x \in \left( {2,3} \right)\].
At \[x = 2\], \[f'\left( x \right) = 0\] and at \[x = 3\], \[f'\left( x \right) = 0\].
So, \[f'\left( 2 \right) = f'\left( 3 \right)\]
Now apply Rolle’s theorem on \[f'\left( x \right)\].
Since \[f'\left( 2 \right) = f'\left( 3 \right)\], there exist \[c \in \left( {2,3} \right)\] such that \[f''\left( c \right) = 0\].
This implies there exist \[c \in \left( {0,\infty } \right)\] such that \[f''\left( c \right) = 0\].
Hence option E is the correct option.
Note: Students often do mark correct option C as they get there exist \[c \in \left( {2,3} \right)\] such that \[f''\left( c \right) = 0\]. But if \[c \in \left( {2,3} \right)\] which means \[c\] also belongs to \[\left( {0,\infty } \right)\]. So option C also correct.
Formula used:
The derivative of the integration \[g\left( x \right) = \int_0^x {f\left( t \right)dt} \] is \[g'\left( x \right) = f\left( x \right)\].
If \[f''\left( x \right) > 0\] at \[x = a\], then the function \[f\left( x \right)\] has local minima at \[x = a\].
If \[f''\left( x \right) < 0\] at \[x = a\], then the function \[f\left( x \right)\] has local maxima at \[x = a\].
Rolle’s Theorem: If a function \[f\] is continuous on the closed interval \[\left[ {a,b} \right]\]and differentiable on the open interval \[\left( {a,b} \right)\] such that \[f\left( a \right) = f\left( b \right)\], then \[f'\left( x \right) = 0\] for some \[x\] with \[a \le x \le b\].
Complete step by step solution:
Given integration is \[f\left( x \right) = \int_0^x {{e^{{t^2}}}\left( {t - 2} \right)\left( {t - 3} \right)dt} \].
We have to find the derivative of \[f\left( x \right)\].
\[f'\left( x \right) = {e^{{x^2}}}\left( {x - 2} \right)\left( {x - 3} \right)\]
Again, differentiate the above equation with respect to x.
\[f''\left( x \right) = \dfrac{d}{{dx}}\left[ {{e^{{x^2}}}\left( {x - 2} \right)\left( {x - 3} \right)} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left( {x - 2} \right)\dfrac{d}{{dx}}\left( {x - 3} \right) + {e^{{x^2}}}\left( {x - 3} \right)\dfrac{d}{{dx}}\left( {x - 2} \right) + \left( {x - 2} \right)\left( {x - 3} \right)\dfrac{d}{{dx}}\left[ {{e^{{x^2}}}} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left( {x - 2} \right) + {e^{{x^2}}}\left( {x - 3} \right) + \left( {x - 2} \right)\left( {x - 3} \right){e^{{x^2}}}\dfrac{d}{{dx}}\left[ {{x^2}} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left( {x - 2} \right) + {e^{{x^2}}}\left( {x - 3} \right) + \left( {x - 2} \right)\left( {x - 3} \right){e^{{x^2}}}\left( {2x} \right)\]
Simplify the above equation:
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left[ {\left( {x - 2} \right) + \left( {x - 3} \right) + 2x\left( {x - 2} \right)\left( {x - 3} \right)} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left[ {x - 2 + x - 3 + 2x\left( {{x^2} - 5x + 6} \right)} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left[ {2x - 5 + 2{x^3} - 10{x^2} + 12x} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{x^2}}}\left[ {2{x^3} - 10{x^2} + 14x - 5} \right]\]
Equate \[f'\left( x \right)\] equal to zero to find the critical point.
\[{e^{{x^2}}}\left( {x - 2} \right)\left( {x - 3} \right) = 0\]
Equate each factor with zero
\[\left( {x - 2} \right) = 0\]
\[ \Rightarrow x = 2\]
\[\left( {x - 3} \right) = 0\]
\[ \Rightarrow x = 3\]
The critical points of \[f\left( x \right)\] are 2, 3.
Substitute \[x = 2\] in \[f''\left( x \right) = {e^{{x^2}}}\left[ {2{x^3} - 10{x^2} + 14x - 5} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{2^2}}}\left[ {2 \cdot {2^3} - 10 \cdot {2^2} + 14 \cdot 2 - 5} \right]\]
\[ \Rightarrow f''\left( x \right) = - {e^{{2^2}}} < 0\]
Thus \[f\left( x \right)\] has local maximum at \[x = 2\].
Substitute \[x = 3\] in \[f''\left( x \right) = {e^{{x^2}}}\left[ {2{x^3} - 10{x^2} + 14x - 5} \right]\]
\[ \Rightarrow f''\left( x \right) = {e^{{3^2}}}\left[ {2 \cdot {3^3} - 10 \cdot {3^2} + 14 \cdot 3 - 5} \right]\]
\[ \Rightarrow f''\left( x \right) = 11{e^{{2^2}}} > 0\]
Thus \[f\left( x \right)\] has local minima at \[x = 3\].
Check whether the function is increasing or decreasing in \[\left( {2,3} \right)\].
The value of \[\left( {x - 3} \right)\] must be negative when \[x \in \left( {2,3} \right)\].
The value of \[\left( {x - 2} \right)\] must be positive when \[x \in \left( {2,3} \right)\].
The value of \[{e^{{x^2}}}\] must be positive when \[x \in \left( {2,3} \right)\].
So, the product \[{e^{{x^2}}}\left( {x - 2} \right)\left( {x - 3} \right)\] is a negative number.
Thus \[f'\left( x \right) < 0\] for all \[x \in \left( {2,3} \right)\].
So, the function \[f\left( x \right)\] is decreasing in \[x \in \left( {2,3} \right)\].
At \[x = 2\], \[f'\left( x \right) = 0\] and at \[x = 3\], \[f'\left( x \right) = 0\].
So, \[f'\left( 2 \right) = f'\left( 3 \right)\]
Now apply Rolle’s theorem on \[f'\left( x \right)\].
Since \[f'\left( 2 \right) = f'\left( 3 \right)\], there exist \[c \in \left( {2,3} \right)\] such that \[f''\left( c \right) = 0\].
This implies there exist \[c \in \left( {0,\infty } \right)\] such that \[f''\left( c \right) = 0\].
Hence option E is the correct option.
Note: Students often do mark correct option C as they get there exist \[c \in \left( {2,3} \right)\] such that \[f''\left( c \right) = 0\]. But if \[c \in \left( {2,3} \right)\] which means \[c\] also belongs to \[\left( {0,\infty } \right)\]. So option C also correct.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
