
If \[f\left( x \right) = f\left( {2 - x} \right)\], then find the value of \[\int_{0.5}^{1.5} {xf\left( x \right)dx} \].
A. \[\int_0^1 {f\left( x \right)dx} \]
B. \[\int_{0.5}^{1.5} {f\left( x \right)dx} \]
C. \[2\int_{0.5}^{1.5} {f\left( x \right)dx} \]
D. 0
Answer
217.5k+ views
Hint: The given integration is a definite integral. Thus first we will simplify the integration by using the property of the definite integral. To simplify we will apply the property \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \]. Then simplify it to get the required solution.
Formula Used:Definite integral property:
\[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx
Complete step by step solution:Given definite integral is
\[I = \int_{0.5}^{1.5} {xf\left( x \right)dx} \]
Now applying the property of definite integral \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \]:
\[ \Rightarrow I = \int_{0.5}^{1.5} {\left( {1.5 + 0.5 - x} \right)f\left( {1.5 + 0.5 - x} \right)dx} \]
Now adding like term:
\[ \Rightarrow I = \int_{0.5}^{1.5} {\left( {2 - x} \right)f\left( {2 - x} \right)dx} \]
Rewrite the integration:
\[ \Rightarrow I = \int_{0.5}^{1.5} {2f\left( {2 - x} \right)dx} - \int_{0.5}^{1.5} {xf\left( {2 - x} \right)dx} \]
Given that \[f\left( x \right) = f\left( {2 - x} \right)\].
\[ \Rightarrow I = \int_{0.5}^{1.5} {2f\left( x \right)dx} - \int_{0.5}^{1.5} {xf\left( x \right)dx} \]
\[ \Rightarrow I = 2\int_{0.5}^{1.5} {f\left( x \right)dx} - \int_{0.5}^{1.5} {xf\left( x \right)dx} \]
We know that \[I = \int_{0.5}^{1.5} {xf\left( x \right)dx} \].
\[ \Rightarrow I = 2\int_{0.5}^{1.5} {f\left( x \right)dx} - \int_{0.5}^{1.5} {xf\left( x \right)dx} \]
\[ \Rightarrow I = 2\int_{0.5}^{1.5} {f\left( x \right)dx} - I\]
Add I on both sides:
\[ \Rightarrow I + I = 2\int_{0.5}^{1.5} {f\left( x \right)dx} \]
\[ \Rightarrow 2I = 2\int_{0.5}^{1.5} {f\left( x \right)dx} \]
Divide both sides by 2:
\[ \Rightarrow \dfrac{{2I}}{2} = \dfrac{2}{2}\int_{0.5}^{1.5} {f\left( x \right)dx} \]
\[ \Rightarrow I = \int_{0.5}^{1.5} {f\left( x \right)dx} \]
Option ‘B’ is correct
Note: Students often make mistakes to solve the given definite integral. They used wrong property that is \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a - x} \right)dx} \]. But it is the wrong formula. The correct formula is \[\int_0^a {f\left( x \right)dx} = \int_0^a {f\left( {a - x} \right)dx} \]. In the given integration the lower limit is not equal to zero. The correct property is \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \].
Formula Used:Definite integral property:
\[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx
Complete step by step solution:Given definite integral is
\[I = \int_{0.5}^{1.5} {xf\left( x \right)dx} \]
Now applying the property of definite integral \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \]:
\[ \Rightarrow I = \int_{0.5}^{1.5} {\left( {1.5 + 0.5 - x} \right)f\left( {1.5 + 0.5 - x} \right)dx} \]
Now adding like term:
\[ \Rightarrow I = \int_{0.5}^{1.5} {\left( {2 - x} \right)f\left( {2 - x} \right)dx} \]
Rewrite the integration:
\[ \Rightarrow I = \int_{0.5}^{1.5} {2f\left( {2 - x} \right)dx} - \int_{0.5}^{1.5} {xf\left( {2 - x} \right)dx} \]
Given that \[f\left( x \right) = f\left( {2 - x} \right)\].
\[ \Rightarrow I = \int_{0.5}^{1.5} {2f\left( x \right)dx} - \int_{0.5}^{1.5} {xf\left( x \right)dx} \]
\[ \Rightarrow I = 2\int_{0.5}^{1.5} {f\left( x \right)dx} - \int_{0.5}^{1.5} {xf\left( x \right)dx} \]
We know that \[I = \int_{0.5}^{1.5} {xf\left( x \right)dx} \].
\[ \Rightarrow I = 2\int_{0.5}^{1.5} {f\left( x \right)dx} - \int_{0.5}^{1.5} {xf\left( x \right)dx} \]
\[ \Rightarrow I = 2\int_{0.5}^{1.5} {f\left( x \right)dx} - I\]
Add I on both sides:
\[ \Rightarrow I + I = 2\int_{0.5}^{1.5} {f\left( x \right)dx} \]
\[ \Rightarrow 2I = 2\int_{0.5}^{1.5} {f\left( x \right)dx} \]
Divide both sides by 2:
\[ \Rightarrow \dfrac{{2I}}{2} = \dfrac{2}{2}\int_{0.5}^{1.5} {f\left( x \right)dx} \]
\[ \Rightarrow I = \int_{0.5}^{1.5} {f\left( x \right)dx} \]
Option ‘B’ is correct
Note: Students often make mistakes to solve the given definite integral. They used wrong property that is \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a - x} \right)dx} \]. But it is the wrong formula. The correct formula is \[\int_0^a {f\left( x \right)dx} = \int_0^a {f\left( {a - x} \right)dx} \]. In the given integration the lower limit is not equal to zero. The correct property is \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \].
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

