
If \[f\left( x \right) = f\left( {2 - x} \right)\], then find the value of \[\int_{0.5}^{1.5} {xf\left( x \right)dx} \].
A. \[\int_0^1 {f\left( x \right)dx} \]
B. \[\int_{0.5}^{1.5} {f\left( x \right)dx} \]
C. \[2\int_{0.5}^{1.5} {f\left( x \right)dx} \]
D. 0
Answer
163.2k+ views
Hint: The given integration is a definite integral. Thus first we will simplify the integration by using the property of the definite integral. To simplify we will apply the property \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \]. Then simplify it to get the required solution.
Formula Used:Definite integral property:
\[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx
Complete step by step solution:Given definite integral is
\[I = \int_{0.5}^{1.5} {xf\left( x \right)dx} \]
Now applying the property of definite integral \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \]:
\[ \Rightarrow I = \int_{0.5}^{1.5} {\left( {1.5 + 0.5 - x} \right)f\left( {1.5 + 0.5 - x} \right)dx} \]
Now adding like term:
\[ \Rightarrow I = \int_{0.5}^{1.5} {\left( {2 - x} \right)f\left( {2 - x} \right)dx} \]
Rewrite the integration:
\[ \Rightarrow I = \int_{0.5}^{1.5} {2f\left( {2 - x} \right)dx} - \int_{0.5}^{1.5} {xf\left( {2 - x} \right)dx} \]
Given that \[f\left( x \right) = f\left( {2 - x} \right)\].
\[ \Rightarrow I = \int_{0.5}^{1.5} {2f\left( x \right)dx} - \int_{0.5}^{1.5} {xf\left( x \right)dx} \]
\[ \Rightarrow I = 2\int_{0.5}^{1.5} {f\left( x \right)dx} - \int_{0.5}^{1.5} {xf\left( x \right)dx} \]
We know that \[I = \int_{0.5}^{1.5} {xf\left( x \right)dx} \].
\[ \Rightarrow I = 2\int_{0.5}^{1.5} {f\left( x \right)dx} - \int_{0.5}^{1.5} {xf\left( x \right)dx} \]
\[ \Rightarrow I = 2\int_{0.5}^{1.5} {f\left( x \right)dx} - I\]
Add I on both sides:
\[ \Rightarrow I + I = 2\int_{0.5}^{1.5} {f\left( x \right)dx} \]
\[ \Rightarrow 2I = 2\int_{0.5}^{1.5} {f\left( x \right)dx} \]
Divide both sides by 2:
\[ \Rightarrow \dfrac{{2I}}{2} = \dfrac{2}{2}\int_{0.5}^{1.5} {f\left( x \right)dx} \]
\[ \Rightarrow I = \int_{0.5}^{1.5} {f\left( x \right)dx} \]
Option ‘B’ is correct
Note: Students often make mistakes to solve the given definite integral. They used wrong property that is \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a - x} \right)dx} \]. But it is the wrong formula. The correct formula is \[\int_0^a {f\left( x \right)dx} = \int_0^a {f\left( {a - x} \right)dx} \]. In the given integration the lower limit is not equal to zero. The correct property is \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \].
Formula Used:Definite integral property:
\[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx
Complete step by step solution:Given definite integral is
\[I = \int_{0.5}^{1.5} {xf\left( x \right)dx} \]
Now applying the property of definite integral \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \]:
\[ \Rightarrow I = \int_{0.5}^{1.5} {\left( {1.5 + 0.5 - x} \right)f\left( {1.5 + 0.5 - x} \right)dx} \]
Now adding like term:
\[ \Rightarrow I = \int_{0.5}^{1.5} {\left( {2 - x} \right)f\left( {2 - x} \right)dx} \]
Rewrite the integration:
\[ \Rightarrow I = \int_{0.5}^{1.5} {2f\left( {2 - x} \right)dx} - \int_{0.5}^{1.5} {xf\left( {2 - x} \right)dx} \]
Given that \[f\left( x \right) = f\left( {2 - x} \right)\].
\[ \Rightarrow I = \int_{0.5}^{1.5} {2f\left( x \right)dx} - \int_{0.5}^{1.5} {xf\left( x \right)dx} \]
\[ \Rightarrow I = 2\int_{0.5}^{1.5} {f\left( x \right)dx} - \int_{0.5}^{1.5} {xf\left( x \right)dx} \]
We know that \[I = \int_{0.5}^{1.5} {xf\left( x \right)dx} \].
\[ \Rightarrow I = 2\int_{0.5}^{1.5} {f\left( x \right)dx} - \int_{0.5}^{1.5} {xf\left( x \right)dx} \]
\[ \Rightarrow I = 2\int_{0.5}^{1.5} {f\left( x \right)dx} - I\]
Add I on both sides:
\[ \Rightarrow I + I = 2\int_{0.5}^{1.5} {f\left( x \right)dx} \]
\[ \Rightarrow 2I = 2\int_{0.5}^{1.5} {f\left( x \right)dx} \]
Divide both sides by 2:
\[ \Rightarrow \dfrac{{2I}}{2} = \dfrac{2}{2}\int_{0.5}^{1.5} {f\left( x \right)dx} \]
\[ \Rightarrow I = \int_{0.5}^{1.5} {f\left( x \right)dx} \]
Option ‘B’ is correct
Note: Students often make mistakes to solve the given definite integral. They used wrong property that is \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a - x} \right)dx} \]. But it is the wrong formula. The correct formula is \[\int_0^a {f\left( x \right)dx} = \int_0^a {f\left( {a - x} \right)dx} \]. In the given integration the lower limit is not equal to zero. The correct property is \[\int_b^a {f\left( x \right)dx} = \int_b^a {f\left( {a + b - x} \right)dx} \].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
