
If $f\left( x \right) = \dfrac{{\left[ {ax + b} \right]}}{{\left[ {cx + d} \right]}}$, then $fof(x) = x$ provided that
1.$d = - a$
2. $d = a$
3. $a = b = c = d = 1$
4. $a = b = 1$
Answer
217.5k+ views
Hint: The process of combining two or more functions into a single function is known as composition of function. \[f\left( {g\left( x \right)} \right)\]or $fog(x)$ represents the composition of functions $f\left( x \right)$ and $g\left( x \right)$, where $g\left( x \right)$ acts first. We always simplify anything within brackets first using BODMAS.
Formula used:
Composite function –
$fof = f\left( {f\left( x \right)} \right)$
Complete step by step solution:
Given that,
$f\left( x \right) = \dfrac{{\left[ {ax + b} \right]}}{{\left[ {cx + d} \right]}}$
And $fof(x) = x$
$ \Rightarrow f\left( {f\left( x \right)} \right) = x$
$ \Rightarrow \dfrac{{\left[ {a\left( {\dfrac{{\left[ {ax + b} \right]}}{{\left[ {cx + d} \right]}}} \right) + b} \right]}}{{\left[ {c\left( {\dfrac{{\left[ {ax + b} \right]}}{{\left[ {cx + d} \right]}}} \right) + d} \right]}} = x$
$ \Rightarrow \dfrac{{a\left( {ax + b} \right) + b\left( {cx + d} \right)}}{{c\left( {ax + b} \right) + d\left( {cx + d} \right)}} = x$
$ \Rightarrow a\left( {ax + b} \right) + b\left( {cx + d} \right) = x\left( {c\left( {ax + b} \right) + d\left( {cx + d} \right)} \right)$
$ \Rightarrow {a^2}x + ab + bcx + bd = ac{x^2} + bcx + dc{x^2} + {d^2}x$
$ \Rightarrow {a^2}x + ab + bcx + bd - ac{x^2} - bcx - dc{x^2} - {d^2}x = 0$
$ \Rightarrow (ac + dc){x^2} + ({d^2} - {a^2})x - ab - bd = 0$
$ \Rightarrow (a + d)c = 0,{d^2} - {a^2} = 0,(a + d)b = 0$
$ \Rightarrow a + d = 0$
Therefore, $d = - a$
Hence, Option (1) is the correct answer i.e., $d = - a$.
Note: The key concept involved in solving this problem is the good knowledge of composition of function. Students must remember that the output of one function inside the parenthesis becomes the input of the outside function in a function composition.
Formula used:
Composite function –
$fof = f\left( {f\left( x \right)} \right)$
Complete step by step solution:
Given that,
$f\left( x \right) = \dfrac{{\left[ {ax + b} \right]}}{{\left[ {cx + d} \right]}}$
And $fof(x) = x$
$ \Rightarrow f\left( {f\left( x \right)} \right) = x$
$ \Rightarrow \dfrac{{\left[ {a\left( {\dfrac{{\left[ {ax + b} \right]}}{{\left[ {cx + d} \right]}}} \right) + b} \right]}}{{\left[ {c\left( {\dfrac{{\left[ {ax + b} \right]}}{{\left[ {cx + d} \right]}}} \right) + d} \right]}} = x$
$ \Rightarrow \dfrac{{a\left( {ax + b} \right) + b\left( {cx + d} \right)}}{{c\left( {ax + b} \right) + d\left( {cx + d} \right)}} = x$
$ \Rightarrow a\left( {ax + b} \right) + b\left( {cx + d} \right) = x\left( {c\left( {ax + b} \right) + d\left( {cx + d} \right)} \right)$
$ \Rightarrow {a^2}x + ab + bcx + bd = ac{x^2} + bcx + dc{x^2} + {d^2}x$
$ \Rightarrow {a^2}x + ab + bcx + bd - ac{x^2} - bcx - dc{x^2} - {d^2}x = 0$
$ \Rightarrow (ac + dc){x^2} + ({d^2} - {a^2})x - ab - bd = 0$
$ \Rightarrow (a + d)c = 0,{d^2} - {a^2} = 0,(a + d)b = 0$
$ \Rightarrow a + d = 0$
Therefore, $d = - a$
Hence, Option (1) is the correct answer i.e., $d = - a$.
Note: The key concept involved in solving this problem is the good knowledge of composition of function. Students must remember that the output of one function inside the parenthesis becomes the input of the outside function in a function composition.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

