Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

If $f\left( x \right) = \dfrac{{\left[ {ax + b} \right]}}{{\left[ {cx + d} \right]}}$, then $fof(x) = x$ provided that
1.$d = - a$
2. $d = a$
3. $a = b = c = d = 1$
4. $a = b = 1$

Answer
VerifiedVerified
161.1k+ views
Hint: The process of combining two or more functions into a single function is known as composition of function. \[f\left( {g\left( x \right)} \right)\]or $fog(x)$ represents the composition of functions $f\left( x \right)$ and $g\left( x \right)$, where $g\left( x \right)$ acts first. We always simplify anything within brackets first using BODMAS.

Formula used:
Composite function –
$fof = f\left( {f\left( x \right)} \right)$

Complete step by step solution:
Given that,
$f\left( x \right) = \dfrac{{\left[ {ax + b} \right]}}{{\left[ {cx + d} \right]}}$
And $fof(x) = x$
$ \Rightarrow f\left( {f\left( x \right)} \right) = x$
$ \Rightarrow \dfrac{{\left[ {a\left( {\dfrac{{\left[ {ax + b} \right]}}{{\left[ {cx + d} \right]}}} \right) + b} \right]}}{{\left[ {c\left( {\dfrac{{\left[ {ax + b} \right]}}{{\left[ {cx + d} \right]}}} \right) + d} \right]}} = x$
$ \Rightarrow \dfrac{{a\left( {ax + b} \right) + b\left( {cx + d} \right)}}{{c\left( {ax + b} \right) + d\left( {cx + d} \right)}} = x$
$ \Rightarrow a\left( {ax + b} \right) + b\left( {cx + d} \right) = x\left( {c\left( {ax + b} \right) + d\left( {cx + d} \right)} \right)$
$ \Rightarrow {a^2}x + ab + bcx + bd = ac{x^2} + bcx + dc{x^2} + {d^2}x$
$ \Rightarrow {a^2}x + ab + bcx + bd - ac{x^2} - bcx - dc{x^2} - {d^2}x = 0$
$ \Rightarrow (ac + dc){x^2} + ({d^2} - {a^2})x - ab - bd = 0$
$ \Rightarrow (a + d)c = 0,{d^2} - {a^2} = 0,(a + d)b = 0$
$ \Rightarrow a + d = 0$
Therefore, $d = - a$
Hence, Option (1) is the correct answer i.e., $d = - a$.

Note: The key concept involved in solving this problem is the good knowledge of composition of function. Students must remember that the output of one function inside the parenthesis becomes the input of the outside function in a function composition.