
If \[\dfrac{\pi }{2} < \alpha < \pi \] ,\[\pi < \beta < \dfrac{{3\pi }}{2}\] ,\[\sin \alpha = \dfrac{{15}}{{17}}\] and \[\tan \beta = \dfrac{{12}}{5}\] , then find the value of \[\sin (\beta - \alpha )\] .
A.\[ - \dfrac{{171}}{{221}}\]
B. \[ - \dfrac{{21}}{{221}}\]
C. \[\dfrac{{21}}{{221}}\]
D. \[\dfrac{{171}}{{221}}\]
Answer
161.1k+ views
Hint: The angle \[\alpha \] is in the second quadrant and \[\beta \] is in the third quadrant. Derive the value of \[\cos \alpha \] from the given value of \[\sin \alpha \] and \[\cos \beta \],\[\sin \beta \] from the given value of \[\tan \beta \] .
Then apply the formula of \[\sin (\beta - \alpha )\] and substitute the required values to obtain the required answer.
Formula used:
\[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
\[\tan \theta = \dfrac{a}{b} \Leftrightarrow \sin \theta = \dfrac{a}{{\sqrt {{a^2} + {b^2}} }},\cos \theta = \dfrac{b}{{\sqrt {{a^2} + {b^2}} }}\]
\[\sin (a - b) = \sin a\cos b - \cos a\sin b\]
Complete step by step solution:
The angle \[\alpha \] is in the second quadrant and \[\beta \] is in the third quadrant.
It is given that \[\sin \alpha = \dfrac{{15}}{{17}}\],
Therefore,
\[\cos \alpha = \sqrt {1 - {{\sin }^2}\alpha } \]
=\[\sqrt {1 - {{\left( {\dfrac{{15}}{{17}}} \right)}^2}} \]
=\[\sqrt {\dfrac{{289 - 225}}{{289}}} \]
=\[\pm \dfrac{8}{{17}}\]
But, as the angle \[\alpha \] is in the second quadrant, so \[\cos \alpha = - \dfrac{8}{{17}}\]
Now, \[\tan \beta = \dfrac{{12}}{5}\]
\[\sin \beta = \dfrac{{12}}{{\sqrt {{5^2} + {{12}^2}} }}\]
\[ = \dfrac{{12}}{{\sqrt {169} }}\]
=\[\dfrac{{12}}{{13}}\]
Hence, \[\cos \beta = \dfrac{5}{{13}}\]
But, as \[\beta \] is in the third quadrant so \[\sin \beta = - \dfrac{{12}}{{13}}\]and \[\cos \beta = - \dfrac{5}{{13}}\].
Now,
\[\sin (\beta - \alpha ) = \sin \beta \cos \alpha - \cos \beta \sin \alpha \]
Substitute \[\sin \beta = - \dfrac{{12}}{{13}}\],\[\cos \beta = - \dfrac{5}{{13}}\],\[\sin \alpha = \dfrac{{15}}{{17}}\] and \[\cos \alpha = - \dfrac{8}{{17}}\],
\[ = \left( { - \dfrac{{12}}{{13}}} \right).\left( { - \dfrac{8}{{17}}} \right) - \left( { - \dfrac{5}{{13}}} \right).\left( {\dfrac{{15}}{{17}}} \right)\]
\[ = \dfrac{{96}}{{221}} + \dfrac{{75}}{{221}}\]
\[ = \dfrac{{171}}{{221}}\]
Therefore, the correct option is D.
Note Sometimes students ignore the range of the angles and just solve the problem; therefore, the solved answer will be incorrect as the signs of sine and cosine change according to the angle. So, we have to pay attention to the given angle for the correct answer.
Then apply the formula of \[\sin (\beta - \alpha )\] and substitute the required values to obtain the required answer.
Formula used:
\[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
\[\tan \theta = \dfrac{a}{b} \Leftrightarrow \sin \theta = \dfrac{a}{{\sqrt {{a^2} + {b^2}} }},\cos \theta = \dfrac{b}{{\sqrt {{a^2} + {b^2}} }}\]
\[\sin (a - b) = \sin a\cos b - \cos a\sin b\]
Complete step by step solution:
The angle \[\alpha \] is in the second quadrant and \[\beta \] is in the third quadrant.
It is given that \[\sin \alpha = \dfrac{{15}}{{17}}\],
Therefore,
\[\cos \alpha = \sqrt {1 - {{\sin }^2}\alpha } \]
=\[\sqrt {1 - {{\left( {\dfrac{{15}}{{17}}} \right)}^2}} \]
=\[\sqrt {\dfrac{{289 - 225}}{{289}}} \]
=\[\pm \dfrac{8}{{17}}\]
But, as the angle \[\alpha \] is in the second quadrant, so \[\cos \alpha = - \dfrac{8}{{17}}\]
Now, \[\tan \beta = \dfrac{{12}}{5}\]
\[\sin \beta = \dfrac{{12}}{{\sqrt {{5^2} + {{12}^2}} }}\]
\[ = \dfrac{{12}}{{\sqrt {169} }}\]
=\[\dfrac{{12}}{{13}}\]
Hence, \[\cos \beta = \dfrac{5}{{13}}\]
But, as \[\beta \] is in the third quadrant so \[\sin \beta = - \dfrac{{12}}{{13}}\]and \[\cos \beta = - \dfrac{5}{{13}}\].
Now,
\[\sin (\beta - \alpha ) = \sin \beta \cos \alpha - \cos \beta \sin \alpha \]
Substitute \[\sin \beta = - \dfrac{{12}}{{13}}\],\[\cos \beta = - \dfrac{5}{{13}}\],\[\sin \alpha = \dfrac{{15}}{{17}}\] and \[\cos \alpha = - \dfrac{8}{{17}}\],
\[ = \left( { - \dfrac{{12}}{{13}}} \right).\left( { - \dfrac{8}{{17}}} \right) - \left( { - \dfrac{5}{{13}}} \right).\left( {\dfrac{{15}}{{17}}} \right)\]
\[ = \dfrac{{96}}{{221}} + \dfrac{{75}}{{221}}\]
\[ = \dfrac{{171}}{{221}}\]
Therefore, the correct option is D.
Note Sometimes students ignore the range of the angles and just solve the problem; therefore, the solved answer will be incorrect as the signs of sine and cosine change according to the angle. So, we have to pay attention to the given angle for the correct answer.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

Two pi and half sigma bonds are present in A N2 + B class 11 chemistry JEE_Main

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Trending doubts
JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

JEE Main B.Arch Cut Off Percentile 2025

JoSAA Counselling 2025: Registration Dates OUT, Eligibility Criteria, Cutoffs

NIT Cutoff Percentile for 2025

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

Other Pages
NCERT Solutions for Class 10 Maths Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles

NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume

NCERT Solutions for Class 10 Maths Chapter 14 Probability

List of Fastest Century in IPL History

NEET 2025 – Every New Update You Need to Know
