
If \[\dfrac{{ - \pi }}{2} < \theta < \dfrac{\pi }{2}\]and \[\theta \ne \dfrac{\pi }{4}\], then what is the value of \[\cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right)\]
A.0
B.-1
C.1
D.-2
E.2
Answer
232.8k+ views
Hint: First we will concert \[\cot \] to \[\tan \]by applying the formula \[\cot \theta = \dfrac{1}{{\tan \theta }}\]. After that we will apply the formula \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\]. Then we will put \[\tan \dfrac{\pi }{4} = 1\]. Then simplify the rational function.
Formula Used:
We will use trigonometric identity
\[\cot \theta = \dfrac{1}{{\tan \theta }}\], \[\tan \dfrac{\pi }{4} = 1\] and angle sum identities of tan i.e., \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and
angle difference identities i.e., \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\].
Complete step by step solution:
Given \[\cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right)\]
Now we will convert cot to tan by using trigonometric identity, \[\cot \theta = \dfrac{1}{{\tan \theta }}\], we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{1}{{\tan \left( {\dfrac{\pi }{4} + \theta } \right)}}} \right)\left( {\dfrac{1}{{\tan \left( {\dfrac{\pi }{4} - \theta } \right)}}} \right)\]
Now we will use the angle sum identities of tan i.e., \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and angle difference identities i.e., \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\], we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{1}{{\dfrac{{\tan \dfrac{\pi }{4} + \tan \theta }}{{1 - \tan \dfrac{\pi }{4}\tan \theta }}}}} \right)\left( {\dfrac{1}{{\dfrac{{\tan \dfrac{\pi }{4} - \tan \theta }}{{1 + \tan \dfrac{\pi }{4}\tan \theta }}}}} \right)\].
Now we will use the fact that\[\tan \dfrac{\pi }{4} = 1\], and we will substitute the value in the expression, we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{1}{{\dfrac{{1 + \tan \theta }}{{1 - 1\left( {\tan \theta } \right)}}}}} \right)\left( {\dfrac{1}{{\dfrac{{1 - \tan \theta }}{{1 + 1\left( {\tan \theta } \right)}}}}} \right)\]
Now we will simplify the expression we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{1}{{\dfrac{{1 + \tan \theta }}{{1 - \tan \theta }}}}} \right)\left( {\dfrac{1}{{\dfrac{{1 - \tan \theta }}{{1 + \tan \theta }}}}} \right)\]
Now we will further simplify the expression we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{{1 - \tan \theta }}{{1 + \tan \theta }}} \right)\left( {\dfrac{{1 + \tan \theta }}{{1 - \tan \theta }}} \right)\]
Now we will eliminate the like terms we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = 1\]
The correct option is C.
Note: students are confused with the identity formula of \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\]. Remember the sign between \[\tan A\] and \[\tan B\]of the numerator is same as the sign between \[A\] and \[B\] and the sign between \[1\] and \[\tan A\tan B\] must opposite sign to the sign between \[\tan A\] and \[\tan B\].
Formula Used:
We will use trigonometric identity
\[\cot \theta = \dfrac{1}{{\tan \theta }}\], \[\tan \dfrac{\pi }{4} = 1\] and angle sum identities of tan i.e., \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and
angle difference identities i.e., \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\].
Complete step by step solution:
Given \[\cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right)\]
Now we will convert cot to tan by using trigonometric identity, \[\cot \theta = \dfrac{1}{{\tan \theta }}\], we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{1}{{\tan \left( {\dfrac{\pi }{4} + \theta } \right)}}} \right)\left( {\dfrac{1}{{\tan \left( {\dfrac{\pi }{4} - \theta } \right)}}} \right)\]
Now we will use the angle sum identities of tan i.e., \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and angle difference identities i.e., \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\], we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{1}{{\dfrac{{\tan \dfrac{\pi }{4} + \tan \theta }}{{1 - \tan \dfrac{\pi }{4}\tan \theta }}}}} \right)\left( {\dfrac{1}{{\dfrac{{\tan \dfrac{\pi }{4} - \tan \theta }}{{1 + \tan \dfrac{\pi }{4}\tan \theta }}}}} \right)\].
Now we will use the fact that\[\tan \dfrac{\pi }{4} = 1\], and we will substitute the value in the expression, we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{1}{{\dfrac{{1 + \tan \theta }}{{1 - 1\left( {\tan \theta } \right)}}}}} \right)\left( {\dfrac{1}{{\dfrac{{1 - \tan \theta }}{{1 + 1\left( {\tan \theta } \right)}}}}} \right)\]
Now we will simplify the expression we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{1}{{\dfrac{{1 + \tan \theta }}{{1 - \tan \theta }}}}} \right)\left( {\dfrac{1}{{\dfrac{{1 - \tan \theta }}{{1 + \tan \theta }}}}} \right)\]
Now we will further simplify the expression we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{{1 - \tan \theta }}{{1 + \tan \theta }}} \right)\left( {\dfrac{{1 + \tan \theta }}{{1 - \tan \theta }}} \right)\]
Now we will eliminate the like terms we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = 1\]
The correct option is C.
Note: students are confused with the identity formula of \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\]. Remember the sign between \[\tan A\] and \[\tan B\]of the numerator is same as the sign between \[A\] and \[B\] and the sign between \[1\] and \[\tan A\tan B\] must opposite sign to the sign between \[\tan A\] and \[\tan B\].
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

