
If \[\dfrac{{ - \pi }}{2} < \theta < \dfrac{\pi }{2}\]and \[\theta \ne \dfrac{\pi }{4}\], then what is the value of \[\cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right)\]
A.0
B.-1
C.1
D.-2
E.2
Answer
161.1k+ views
Hint: First we will concert \[\cot \] to \[\tan \]by applying the formula \[\cot \theta = \dfrac{1}{{\tan \theta }}\]. After that we will apply the formula \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\]. Then we will put \[\tan \dfrac{\pi }{4} = 1\]. Then simplify the rational function.
Formula Used:
We will use trigonometric identity
\[\cot \theta = \dfrac{1}{{\tan \theta }}\], \[\tan \dfrac{\pi }{4} = 1\] and angle sum identities of tan i.e., \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and
angle difference identities i.e., \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\].
Complete step by step solution:
Given \[\cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right)\]
Now we will convert cot to tan by using trigonometric identity, \[\cot \theta = \dfrac{1}{{\tan \theta }}\], we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{1}{{\tan \left( {\dfrac{\pi }{4} + \theta } \right)}}} \right)\left( {\dfrac{1}{{\tan \left( {\dfrac{\pi }{4} - \theta } \right)}}} \right)\]
Now we will use the angle sum identities of tan i.e., \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and angle difference identities i.e., \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\], we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{1}{{\dfrac{{\tan \dfrac{\pi }{4} + \tan \theta }}{{1 - \tan \dfrac{\pi }{4}\tan \theta }}}}} \right)\left( {\dfrac{1}{{\dfrac{{\tan \dfrac{\pi }{4} - \tan \theta }}{{1 + \tan \dfrac{\pi }{4}\tan \theta }}}}} \right)\].
Now we will use the fact that\[\tan \dfrac{\pi }{4} = 1\], and we will substitute the value in the expression, we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{1}{{\dfrac{{1 + \tan \theta }}{{1 - 1\left( {\tan \theta } \right)}}}}} \right)\left( {\dfrac{1}{{\dfrac{{1 - \tan \theta }}{{1 + 1\left( {\tan \theta } \right)}}}}} \right)\]
Now we will simplify the expression we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{1}{{\dfrac{{1 + \tan \theta }}{{1 - \tan \theta }}}}} \right)\left( {\dfrac{1}{{\dfrac{{1 - \tan \theta }}{{1 + \tan \theta }}}}} \right)\]
Now we will further simplify the expression we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{{1 - \tan \theta }}{{1 + \tan \theta }}} \right)\left( {\dfrac{{1 + \tan \theta }}{{1 - \tan \theta }}} \right)\]
Now we will eliminate the like terms we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = 1\]
The correct option is C.
Note: students are confused with the identity formula of \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\]. Remember the sign between \[\tan A\] and \[\tan B\]of the numerator is same as the sign between \[A\] and \[B\] and the sign between \[1\] and \[\tan A\tan B\] must opposite sign to the sign between \[\tan A\] and \[\tan B\].
Formula Used:
We will use trigonometric identity
\[\cot \theta = \dfrac{1}{{\tan \theta }}\], \[\tan \dfrac{\pi }{4} = 1\] and angle sum identities of tan i.e., \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and
angle difference identities i.e., \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\].
Complete step by step solution:
Given \[\cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right)\]
Now we will convert cot to tan by using trigonometric identity, \[\cot \theta = \dfrac{1}{{\tan \theta }}\], we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{1}{{\tan \left( {\dfrac{\pi }{4} + \theta } \right)}}} \right)\left( {\dfrac{1}{{\tan \left( {\dfrac{\pi }{4} - \theta } \right)}}} \right)\]
Now we will use the angle sum identities of tan i.e., \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and angle difference identities i.e., \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\], we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{1}{{\dfrac{{\tan \dfrac{\pi }{4} + \tan \theta }}{{1 - \tan \dfrac{\pi }{4}\tan \theta }}}}} \right)\left( {\dfrac{1}{{\dfrac{{\tan \dfrac{\pi }{4} - \tan \theta }}{{1 + \tan \dfrac{\pi }{4}\tan \theta }}}}} \right)\].
Now we will use the fact that\[\tan \dfrac{\pi }{4} = 1\], and we will substitute the value in the expression, we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{1}{{\dfrac{{1 + \tan \theta }}{{1 - 1\left( {\tan \theta } \right)}}}}} \right)\left( {\dfrac{1}{{\dfrac{{1 - \tan \theta }}{{1 + 1\left( {\tan \theta } \right)}}}}} \right)\]
Now we will simplify the expression we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{1}{{\dfrac{{1 + \tan \theta }}{{1 - \tan \theta }}}}} \right)\left( {\dfrac{1}{{\dfrac{{1 - \tan \theta }}{{1 + \tan \theta }}}}} \right)\]
Now we will further simplify the expression we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{{1 - \tan \theta }}{{1 + \tan \theta }}} \right)\left( {\dfrac{{1 + \tan \theta }}{{1 - \tan \theta }}} \right)\]
Now we will eliminate the like terms we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = 1\]
The correct option is C.
Note: students are confused with the identity formula of \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\]. Remember the sign between \[\tan A\] and \[\tan B\]of the numerator is same as the sign between \[A\] and \[B\] and the sign between \[1\] and \[\tan A\tan B\] must opposite sign to the sign between \[\tan A\] and \[\tan B\].
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
