
If \[\dfrac{{ - \pi }}{2} < \theta < \dfrac{\pi }{2}\]and \[\theta \ne \dfrac{\pi }{4}\], then what is the value of \[\cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right)\]
A.0
B.-1
C.1
D.-2
E.2
Answer
216k+ views
Hint: First we will concert \[\cot \] to \[\tan \]by applying the formula \[\cot \theta = \dfrac{1}{{\tan \theta }}\]. After that we will apply the formula \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\]. Then we will put \[\tan \dfrac{\pi }{4} = 1\]. Then simplify the rational function.
Formula Used:
We will use trigonometric identity
\[\cot \theta = \dfrac{1}{{\tan \theta }}\], \[\tan \dfrac{\pi }{4} = 1\] and angle sum identities of tan i.e., \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and
angle difference identities i.e., \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\].
Complete step by step solution:
Given \[\cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right)\]
Now we will convert cot to tan by using trigonometric identity, \[\cot \theta = \dfrac{1}{{\tan \theta }}\], we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{1}{{\tan \left( {\dfrac{\pi }{4} + \theta } \right)}}} \right)\left( {\dfrac{1}{{\tan \left( {\dfrac{\pi }{4} - \theta } \right)}}} \right)\]
Now we will use the angle sum identities of tan i.e., \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and angle difference identities i.e., \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\], we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{1}{{\dfrac{{\tan \dfrac{\pi }{4} + \tan \theta }}{{1 - \tan \dfrac{\pi }{4}\tan \theta }}}}} \right)\left( {\dfrac{1}{{\dfrac{{\tan \dfrac{\pi }{4} - \tan \theta }}{{1 + \tan \dfrac{\pi }{4}\tan \theta }}}}} \right)\].
Now we will use the fact that\[\tan \dfrac{\pi }{4} = 1\], and we will substitute the value in the expression, we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{1}{{\dfrac{{1 + \tan \theta }}{{1 - 1\left( {\tan \theta } \right)}}}}} \right)\left( {\dfrac{1}{{\dfrac{{1 - \tan \theta }}{{1 + 1\left( {\tan \theta } \right)}}}}} \right)\]
Now we will simplify the expression we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{1}{{\dfrac{{1 + \tan \theta }}{{1 - \tan \theta }}}}} \right)\left( {\dfrac{1}{{\dfrac{{1 - \tan \theta }}{{1 + \tan \theta }}}}} \right)\]
Now we will further simplify the expression we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{{1 - \tan \theta }}{{1 + \tan \theta }}} \right)\left( {\dfrac{{1 + \tan \theta }}{{1 - \tan \theta }}} \right)\]
Now we will eliminate the like terms we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = 1\]
The correct option is C.
Note: students are confused with the identity formula of \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\]. Remember the sign between \[\tan A\] and \[\tan B\]of the numerator is same as the sign between \[A\] and \[B\] and the sign between \[1\] and \[\tan A\tan B\] must opposite sign to the sign between \[\tan A\] and \[\tan B\].
Formula Used:
We will use trigonometric identity
\[\cot \theta = \dfrac{1}{{\tan \theta }}\], \[\tan \dfrac{\pi }{4} = 1\] and angle sum identities of tan i.e., \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and
angle difference identities i.e., \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\].
Complete step by step solution:
Given \[\cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right)\]
Now we will convert cot to tan by using trigonometric identity, \[\cot \theta = \dfrac{1}{{\tan \theta }}\], we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{1}{{\tan \left( {\dfrac{\pi }{4} + \theta } \right)}}} \right)\left( {\dfrac{1}{{\tan \left( {\dfrac{\pi }{4} - \theta } \right)}}} \right)\]
Now we will use the angle sum identities of tan i.e., \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and angle difference identities i.e., \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\], we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{1}{{\dfrac{{\tan \dfrac{\pi }{4} + \tan \theta }}{{1 - \tan \dfrac{\pi }{4}\tan \theta }}}}} \right)\left( {\dfrac{1}{{\dfrac{{\tan \dfrac{\pi }{4} - \tan \theta }}{{1 + \tan \dfrac{\pi }{4}\tan \theta }}}}} \right)\].
Now we will use the fact that\[\tan \dfrac{\pi }{4} = 1\], and we will substitute the value in the expression, we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{1}{{\dfrac{{1 + \tan \theta }}{{1 - 1\left( {\tan \theta } \right)}}}}} \right)\left( {\dfrac{1}{{\dfrac{{1 - \tan \theta }}{{1 + 1\left( {\tan \theta } \right)}}}}} \right)\]
Now we will simplify the expression we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{1}{{\dfrac{{1 + \tan \theta }}{{1 - \tan \theta }}}}} \right)\left( {\dfrac{1}{{\dfrac{{1 - \tan \theta }}{{1 + \tan \theta }}}}} \right)\]
Now we will further simplify the expression we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = \left( {\dfrac{{1 - \tan \theta }}{{1 + \tan \theta }}} \right)\left( {\dfrac{{1 + \tan \theta }}{{1 - \tan \theta }}} \right)\]
Now we will eliminate the like terms we will get,
\[ \Rightarrow \cot \left( {\dfrac{\pi }{4} + \theta } \right)\cot \left( {\dfrac{\pi }{4} - \theta } \right) = 1\]
The correct option is C.
Note: students are confused with the identity formula of \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\]. Remember the sign between \[\tan A\] and \[\tan B\]of the numerator is same as the sign between \[A\] and \[B\] and the sign between \[1\] and \[\tan A\tan B\] must opposite sign to the sign between \[\tan A\] and \[\tan B\].
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

