
If \[\cot x + \cos ecx = \sqrt 3 \] then find the principal value of \[\left( {x - \dfrac{\pi }{6}} \right)\]
A.\[\dfrac{\pi }{3}\]
B. \[\dfrac{\pi }{4}\]
C. \[\dfrac{\pi }{2}\]
D. \[\dfrac{\pi }{6}\]
Answer
217.5k+ views
Hint: First write the given equation in \[\sin ,\cos \] form, then solve it. After solving the equation write the general value of x as \[x = 2n\pi + \dfrac{\pi }{3}\], then subtract \[\dfrac{\pi }{6}\] from each side to get the form \[\left( {x - \dfrac{\pi }{6}} \right)\]. Then substitute 0 for n in the equation \[x{\rm{ }}-{\rm{ }}\dfrac{\pi }{6}{\rm{ }} = {\rm{ }}2n\pi {\rm{ }} + {\rm{ }}\dfrac{\pi }{6}\] to obtain the principal value.
Formula Used:The general solution of
\[\begin{array}{l}\tan x = \tan\theta \\ \Rightarrow x = n\pi + \theta \end{array}\]
And \[1 + \cos 2A = 2{\cos ^2}A\],
\[\sin 2A = 2\sin A\cos A\] .
Complete step by step solution:The given equation is,
\[\cot x{\rm{ }} + {\rm{ }}\cos ecx{\rm{ }} = {\rm{ }}\surd 3\]
\[\dfrac{{\cos x}}{{\sin x}}{\rm{ + }}\dfrac{1}{{\sin x}}{\rm{ }} = {\rm{ }}\surd 3\]
\[\dfrac{{1 + \cos x}}{{\sin x}} = {\rm{ }}\surd 3\]
\[\dfrac{{2{{\cos }^2}\dfrac{x}{2}}}{{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{\rm{ }} = {\rm{ }}\surd 3\]
\[\dfrac{{\cos \dfrac{x}{2}}}{{\sin \dfrac{x}{2}}}{\rm{ }} = {\rm{ }}\surd 3\]
\[{\rm{cot }}\left( {\dfrac{x}{2}} \right){\rm{ }} = {\rm{ }}\surd 3\]
Take the reciprocal of both side of the equation.
Now,
\[\tan {\rm{ }}\left( {\dfrac{x}{2}} \right){\rm{ }} = {\rm{ }}\dfrac{1}{{\sqrt 3 }}\]
\[\dfrac{x}{2}{\rm{ }} = {\rm{ }}n\pi {\rm{ }} + {\rm{ }}\dfrac{\pi }{6}\]
\[x{\rm{ }} = {\rm{ }}2n\pi {\rm{ }} + {\rm{ }}\dfrac{\pi }{3}\]
Subtract \[\dfrac{\pi }{6}\] from both sides of the equation,
\[x{\rm{ }}-{\rm{ }}\dfrac{\pi }{6}{\rm{ }} = {\rm{ }}2n\pi {\rm{ }} + {\rm{ }}\dfrac{\pi }{6}\]
Substitute 0 for n in the equation \[x{\rm{ }}-{\rm{ }}\dfrac{\pi }{6}{\rm{ }} = {\rm{ }}2n\pi {\rm{ }} + {\rm{ }}\dfrac{\pi }{6}\] to obtain the principal value.
Therefore, the principal value is \[\dfrac{\pi }{6}\] .
Option ‘D’ is correct
Note: Sometime students only write \[\tan {\rm{ }}\left( {\dfrac{x}{2}} \right){\rm{ }} = {\rm{ tan }}\dfrac{\pi }{6}\], as \[{\rm{tan }}\dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }}\] this concept is correct but for generalisation we need to write all the angles for which tangent takes the value \[\dfrac{1}{{\sqrt 3 }}\], so we need to write it as \[\dfrac{x}{2}{\rm{ }} = {\rm{ }}n\pi {\rm{ }} + {\rm{ }}\dfrac{\pi }{6}\] .
Formula Used:The general solution of
\[\begin{array}{l}\tan x = \tan\theta \\ \Rightarrow x = n\pi + \theta \end{array}\]
And \[1 + \cos 2A = 2{\cos ^2}A\],
\[\sin 2A = 2\sin A\cos A\] .
Complete step by step solution:The given equation is,
\[\cot x{\rm{ }} + {\rm{ }}\cos ecx{\rm{ }} = {\rm{ }}\surd 3\]
\[\dfrac{{\cos x}}{{\sin x}}{\rm{ + }}\dfrac{1}{{\sin x}}{\rm{ }} = {\rm{ }}\surd 3\]
\[\dfrac{{1 + \cos x}}{{\sin x}} = {\rm{ }}\surd 3\]
\[\dfrac{{2{{\cos }^2}\dfrac{x}{2}}}{{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{\rm{ }} = {\rm{ }}\surd 3\]
\[\dfrac{{\cos \dfrac{x}{2}}}{{\sin \dfrac{x}{2}}}{\rm{ }} = {\rm{ }}\surd 3\]
\[{\rm{cot }}\left( {\dfrac{x}{2}} \right){\rm{ }} = {\rm{ }}\surd 3\]
Take the reciprocal of both side of the equation.
Now,
\[\tan {\rm{ }}\left( {\dfrac{x}{2}} \right){\rm{ }} = {\rm{ }}\dfrac{1}{{\sqrt 3 }}\]
\[\dfrac{x}{2}{\rm{ }} = {\rm{ }}n\pi {\rm{ }} + {\rm{ }}\dfrac{\pi }{6}\]
\[x{\rm{ }} = {\rm{ }}2n\pi {\rm{ }} + {\rm{ }}\dfrac{\pi }{3}\]
Subtract \[\dfrac{\pi }{6}\] from both sides of the equation,
\[x{\rm{ }}-{\rm{ }}\dfrac{\pi }{6}{\rm{ }} = {\rm{ }}2n\pi {\rm{ }} + {\rm{ }}\dfrac{\pi }{6}\]
Substitute 0 for n in the equation \[x{\rm{ }}-{\rm{ }}\dfrac{\pi }{6}{\rm{ }} = {\rm{ }}2n\pi {\rm{ }} + {\rm{ }}\dfrac{\pi }{6}\] to obtain the principal value.
Therefore, the principal value is \[\dfrac{\pi }{6}\] .
Option ‘D’ is correct
Note: Sometime students only write \[\tan {\rm{ }}\left( {\dfrac{x}{2}} \right){\rm{ }} = {\rm{ tan }}\dfrac{\pi }{6}\], as \[{\rm{tan }}\dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }}\] this concept is correct but for generalisation we need to write all the angles for which tangent takes the value \[\dfrac{1}{{\sqrt 3 }}\], so we need to write it as \[\dfrac{x}{2}{\rm{ }} = {\rm{ }}n\pi {\rm{ }} + {\rm{ }}\dfrac{\pi }{6}\] .
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

