
If \[\cot x + \cos ecx = \sqrt 3 \] then find the principal value of \[\left( {x - \dfrac{\pi }{6}} \right)\]
A.\[\dfrac{\pi }{3}\]
B. \[\dfrac{\pi }{4}\]
C. \[\dfrac{\pi }{2}\]
D. \[\dfrac{\pi }{6}\]
Answer
162.9k+ views
Hint: First write the given equation in \[\sin ,\cos \] form, then solve it. After solving the equation write the general value of x as \[x = 2n\pi + \dfrac{\pi }{3}\], then subtract \[\dfrac{\pi }{6}\] from each side to get the form \[\left( {x - \dfrac{\pi }{6}} \right)\]. Then substitute 0 for n in the equation \[x{\rm{ }}-{\rm{ }}\dfrac{\pi }{6}{\rm{ }} = {\rm{ }}2n\pi {\rm{ }} + {\rm{ }}\dfrac{\pi }{6}\] to obtain the principal value.
Formula Used:The general solution of
\[\begin{array}{l}\tan x = \tan\theta \\ \Rightarrow x = n\pi + \theta \end{array}\]
And \[1 + \cos 2A = 2{\cos ^2}A\],
\[\sin 2A = 2\sin A\cos A\] .
Complete step by step solution:The given equation is,
\[\cot x{\rm{ }} + {\rm{ }}\cos ecx{\rm{ }} = {\rm{ }}\surd 3\]
\[\dfrac{{\cos x}}{{\sin x}}{\rm{ + }}\dfrac{1}{{\sin x}}{\rm{ }} = {\rm{ }}\surd 3\]
\[\dfrac{{1 + \cos x}}{{\sin x}} = {\rm{ }}\surd 3\]
\[\dfrac{{2{{\cos }^2}\dfrac{x}{2}}}{{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{\rm{ }} = {\rm{ }}\surd 3\]
\[\dfrac{{\cos \dfrac{x}{2}}}{{\sin \dfrac{x}{2}}}{\rm{ }} = {\rm{ }}\surd 3\]
\[{\rm{cot }}\left( {\dfrac{x}{2}} \right){\rm{ }} = {\rm{ }}\surd 3\]
Take the reciprocal of both side of the equation.
Now,
\[\tan {\rm{ }}\left( {\dfrac{x}{2}} \right){\rm{ }} = {\rm{ }}\dfrac{1}{{\sqrt 3 }}\]
\[\dfrac{x}{2}{\rm{ }} = {\rm{ }}n\pi {\rm{ }} + {\rm{ }}\dfrac{\pi }{6}\]
\[x{\rm{ }} = {\rm{ }}2n\pi {\rm{ }} + {\rm{ }}\dfrac{\pi }{3}\]
Subtract \[\dfrac{\pi }{6}\] from both sides of the equation,
\[x{\rm{ }}-{\rm{ }}\dfrac{\pi }{6}{\rm{ }} = {\rm{ }}2n\pi {\rm{ }} + {\rm{ }}\dfrac{\pi }{6}\]
Substitute 0 for n in the equation \[x{\rm{ }}-{\rm{ }}\dfrac{\pi }{6}{\rm{ }} = {\rm{ }}2n\pi {\rm{ }} + {\rm{ }}\dfrac{\pi }{6}\] to obtain the principal value.
Therefore, the principal value is \[\dfrac{\pi }{6}\] .
Option ‘D’ is correct
Note: Sometime students only write \[\tan {\rm{ }}\left( {\dfrac{x}{2}} \right){\rm{ }} = {\rm{ tan }}\dfrac{\pi }{6}\], as \[{\rm{tan }}\dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }}\] this concept is correct but for generalisation we need to write all the angles for which tangent takes the value \[\dfrac{1}{{\sqrt 3 }}\], so we need to write it as \[\dfrac{x}{2}{\rm{ }} = {\rm{ }}n\pi {\rm{ }} + {\rm{ }}\dfrac{\pi }{6}\] .
Formula Used:The general solution of
\[\begin{array}{l}\tan x = \tan\theta \\ \Rightarrow x = n\pi + \theta \end{array}\]
And \[1 + \cos 2A = 2{\cos ^2}A\],
\[\sin 2A = 2\sin A\cos A\] .
Complete step by step solution:The given equation is,
\[\cot x{\rm{ }} + {\rm{ }}\cos ecx{\rm{ }} = {\rm{ }}\surd 3\]
\[\dfrac{{\cos x}}{{\sin x}}{\rm{ + }}\dfrac{1}{{\sin x}}{\rm{ }} = {\rm{ }}\surd 3\]
\[\dfrac{{1 + \cos x}}{{\sin x}} = {\rm{ }}\surd 3\]
\[\dfrac{{2{{\cos }^2}\dfrac{x}{2}}}{{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{\rm{ }} = {\rm{ }}\surd 3\]
\[\dfrac{{\cos \dfrac{x}{2}}}{{\sin \dfrac{x}{2}}}{\rm{ }} = {\rm{ }}\surd 3\]
\[{\rm{cot }}\left( {\dfrac{x}{2}} \right){\rm{ }} = {\rm{ }}\surd 3\]
Take the reciprocal of both side of the equation.
Now,
\[\tan {\rm{ }}\left( {\dfrac{x}{2}} \right){\rm{ }} = {\rm{ }}\dfrac{1}{{\sqrt 3 }}\]
\[\dfrac{x}{2}{\rm{ }} = {\rm{ }}n\pi {\rm{ }} + {\rm{ }}\dfrac{\pi }{6}\]
\[x{\rm{ }} = {\rm{ }}2n\pi {\rm{ }} + {\rm{ }}\dfrac{\pi }{3}\]
Subtract \[\dfrac{\pi }{6}\] from both sides of the equation,
\[x{\rm{ }}-{\rm{ }}\dfrac{\pi }{6}{\rm{ }} = {\rm{ }}2n\pi {\rm{ }} + {\rm{ }}\dfrac{\pi }{6}\]
Substitute 0 for n in the equation \[x{\rm{ }}-{\rm{ }}\dfrac{\pi }{6}{\rm{ }} = {\rm{ }}2n\pi {\rm{ }} + {\rm{ }}\dfrac{\pi }{6}\] to obtain the principal value.
Therefore, the principal value is \[\dfrac{\pi }{6}\] .
Option ‘D’ is correct
Note: Sometime students only write \[\tan {\rm{ }}\left( {\dfrac{x}{2}} \right){\rm{ }} = {\rm{ tan }}\dfrac{\pi }{6}\], as \[{\rm{tan }}\dfrac{\pi }{6} = \dfrac{1}{{\sqrt 3 }}\] this concept is correct but for generalisation we need to write all the angles for which tangent takes the value \[\dfrac{1}{{\sqrt 3 }}\], so we need to write it as \[\dfrac{x}{2}{\rm{ }} = {\rm{ }}n\pi {\rm{ }} + {\rm{ }}\dfrac{\pi }{6}\] .
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025

1 Billion in Rupees
