
If \[\cos x \ne \dfrac{1}{2}\] then find the solution of \[\cos x + \cos 2x + \cos 3x = 0\]
A.\[2n\pi {\rm{ }} \pm {\rm{ }}\dfrac{\pi }{4},{\rm{ }}n \in \mathbb{Z}\]
B. \[2n\pi {\rm{ }} \pm {\rm{ }}\dfrac{\pi }{3},{\rm{ }}n \in \mathbb{Z}\]
C. \[2n\pi {\rm{ }} \pm {\rm{ }}\dfrac{\pi }{6},{\rm{ }}n \in \mathbb{Z}\]
D. \[2n\pi {\rm{ }} \pm {\rm{ }}\dfrac{\pi }{2},{\rm{ }}n \in \mathbb{Z}\]
Answer
162.9k+ views
Hint: First apply the sum formula of cosine on \[\cos x + \cos 3x\] then factor out the common term \[\cos 2x\], as \[\cos x \ne \dfrac{1}{2}\] so equate \[\cos 2x\] to zero. Now, use the value \[\cos \dfrac{\pi }{2} = 0\] to obtain the of x. Lastly use the formula of general solution of cosine to obtain the required result.
Formula Used:The sum formula of cosine is,
\[cos{\rm{ }}C{\rm{ }} + {\rm{ }}cos{\rm{ }}D{\rm{ }} = {\rm{ }}2{\rm{ }}cos\dfrac{{\left( {C{\rm{ }} + {\rm{ }}D} \right)}}{2}{\rm{ }}cos\dfrac{{\left( {C{\rm{ }}-{\rm{ }}D} \right)}}{2}\] .
The general solution of
\[\begin{array}{l}\cos x = \cos \theta \\ \Rightarrow x = 2n\pi \pm \theta \end{array}\]
Complete step by step solution:The given equation is,
\[\cos x + \cos 2x + \cos 3x = 0\]
\[\Rightarrow (\cos x + \cos 3x) + \cos 2x = 0\]
\[\Rightarrow 2\cos \dfrac{{x + 3x}}{2}\cos \dfrac{{3x - x}}{2} + \cos 2x = 0\]
\[\Rightarrow 2\cos 2x\cos x + \cos 2x = 0\]
\[\Rightarrow \cos 2x(2\cos x + 1) = 0\]
\[\Rightarrow \cos 2x = 0{\rm{ or 1 + 2cosx = 0}}\]
But, \[\cos x \ne \dfrac{1}{2}\]
Therefore,
\[\cos 2x = 0\]
\[\Rightarrow \cos 2x = \cos \dfrac{\pi }{2}\]
\[\Rightarrow 2x = \dfrac{\pi }{2}\]
\[\Rightarrow x = \dfrac{\pi }{4}\]
Therefore, the solution is \[2n\pi \pm \dfrac{\pi }{4}\] .
Option ‘A’ is correct
Note: Sometime students write \[x = \dfrac{\pi }{4}\] as answer but this is partially correct as this answer does not cover all the angles for which \[\cos 2x = 0\], so here we need to use the general formula and write the answer as \[2n\pi \pm \dfrac{\pi }{4}\].
Formula Used:The sum formula of cosine is,
\[cos{\rm{ }}C{\rm{ }} + {\rm{ }}cos{\rm{ }}D{\rm{ }} = {\rm{ }}2{\rm{ }}cos\dfrac{{\left( {C{\rm{ }} + {\rm{ }}D} \right)}}{2}{\rm{ }}cos\dfrac{{\left( {C{\rm{ }}-{\rm{ }}D} \right)}}{2}\] .
The general solution of
\[\begin{array}{l}\cos x = \cos \theta \\ \Rightarrow x = 2n\pi \pm \theta \end{array}\]
Complete step by step solution:The given equation is,
\[\cos x + \cos 2x + \cos 3x = 0\]
\[\Rightarrow (\cos x + \cos 3x) + \cos 2x = 0\]
\[\Rightarrow 2\cos \dfrac{{x + 3x}}{2}\cos \dfrac{{3x - x}}{2} + \cos 2x = 0\]
\[\Rightarrow 2\cos 2x\cos x + \cos 2x = 0\]
\[\Rightarrow \cos 2x(2\cos x + 1) = 0\]
\[\Rightarrow \cos 2x = 0{\rm{ or 1 + 2cosx = 0}}\]
But, \[\cos x \ne \dfrac{1}{2}\]
Therefore,
\[\cos 2x = 0\]
\[\Rightarrow \cos 2x = \cos \dfrac{\pi }{2}\]
\[\Rightarrow 2x = \dfrac{\pi }{2}\]
\[\Rightarrow x = \dfrac{\pi }{4}\]
Therefore, the solution is \[2n\pi \pm \dfrac{\pi }{4}\] .
Option ‘A’ is correct
Note: Sometime students write \[x = \dfrac{\pi }{4}\] as answer but this is partially correct as this answer does not cover all the angles for which \[\cos 2x = 0\], so here we need to use the general formula and write the answer as \[2n\pi \pm \dfrac{\pi }{4}\].
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

IIIT JEE Main Cutoff 2024

IIT Full Form

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

JEE Main Cut-Off for NIT Kurukshetra: All Important Details

JEE Main Cut-Off for VNIT Nagpur 2025: Check All Rounds Cutoff Ranks

Other Pages
NEET 2025: All Major Changes in Application Process, Pattern and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025: Important Information and Key Updates

1 Billion in Rupees - Conversion, Solved Examples and FAQs

NEET 2025 Syllabus PDF by NTA (Released)

Important Days In June: What Do You Need To Know
