
If $\cos \theta = (\dfrac{1}{2})(a + \dfrac{1}{a})$ then the value of $\cos 3\theta $ is
A. $(\dfrac{1}{8})(a^3 + \dfrac{1}{a^3})$
B. $(\dfrac{3}{2})(a + \dfrac{1}{a})$
C. $(\dfrac{1}{2})(a^3 + \dfrac{1}{a^3})$
D. $(\dfrac{1}{3})(a^3 + \dfrac{1}{a^3})$
Answer
233.1k+ views
Hint: Before we proceed to solve the problem, it is important to know about the trigonometric formula to be used. To solve this question, you could directly use the trigonometric identities. $\cos 3\theta $ is an identity in trigonometry and can be expressed in terms of the $\cos \theta $.
Formula Used:
$\cos 3\theta = 4{\cos ^3}\theta - 3\cos \theta $
${x^3} + {y^3} = (x + y)({x^2} + {y^2} - xy)$
Complete step by step Solution:
We need to find the value of $\cos 3\theta $. This is the multiple-angle formula.
Given that
$\cos \theta = (\dfrac{1}{2})(a + \dfrac{1}{a})$
$\cos 3\theta = \cos \theta (4{\cos ^2}\theta - 3)$
$ \Rightarrow \cos 3\theta = (\dfrac{1}{2})(a + \dfrac{1}{a})[4 \times {\{ \dfrac{1}{2}(a + \dfrac{1}{a})\} ^2} - 3]$
$ \Rightarrow \cos 3\theta = (\dfrac{1}{2})(a + \dfrac{1}{a})[\dfrac{4}{4}({a^2} + \dfrac{1}{{{a^2}}} + 2) - 3]$
$ \Rightarrow \cos 3\theta = (\dfrac{1}{2})(a + \dfrac{1}{a})({a^2} + \dfrac{1}{{{a^2}}} - 1]$
$ \Rightarrow \cos 3\theta = (\dfrac{1}{2})({a^3} + \dfrac{1}{{{a^3}}})$ [since ${x^3} + {y^3} = (x + y)({x^2} + {y^2} - xy)$]
Therefore, correct option is C
Note:We can also solve this question by using the double angle formula of cos and then using the trigonometric identities. To solve these types of questions in an untedius way you should know the triple angle formula for both cosine and sine angle. You can solve fastly if you know the formula correctly.
Formula Used:
$\cos 3\theta = 4{\cos ^3}\theta - 3\cos \theta $
${x^3} + {y^3} = (x + y)({x^2} + {y^2} - xy)$
Complete step by step Solution:
We need to find the value of $\cos 3\theta $. This is the multiple-angle formula.
Given that
$\cos \theta = (\dfrac{1}{2})(a + \dfrac{1}{a})$
$\cos 3\theta = \cos \theta (4{\cos ^2}\theta - 3)$
$ \Rightarrow \cos 3\theta = (\dfrac{1}{2})(a + \dfrac{1}{a})[4 \times {\{ \dfrac{1}{2}(a + \dfrac{1}{a})\} ^2} - 3]$
$ \Rightarrow \cos 3\theta = (\dfrac{1}{2})(a + \dfrac{1}{a})[\dfrac{4}{4}({a^2} + \dfrac{1}{{{a^2}}} + 2) - 3]$
$ \Rightarrow \cos 3\theta = (\dfrac{1}{2})(a + \dfrac{1}{a})({a^2} + \dfrac{1}{{{a^2}}} - 1]$
$ \Rightarrow \cos 3\theta = (\dfrac{1}{2})({a^3} + \dfrac{1}{{{a^3}}})$ [since ${x^3} + {y^3} = (x + y)({x^2} + {y^2} - xy)$]
Therefore, correct option is C
Note:We can also solve this question by using the double angle formula of cos and then using the trigonometric identities. To solve these types of questions in an untedius way you should know the triple angle formula for both cosine and sine angle. You can solve fastly if you know the formula correctly.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

