
If $b=a-\dfrac{{{a}^{2}}}{2}+\dfrac{{{a}^{3}}}{3}-\dfrac{{{a}^{4}}}{4}+...$ then $b+\dfrac{{{b}^{2}}}{2!}+\dfrac{{{b}^{3}}}{3!}+\dfrac{{{b}^{4}}}{4!}+...\infty $
A. ${{\log }_{e}}a$
B. ${{\log }_{e}}b$
C. $a$
D. ${{e}^{a}}$
Answer
219.9k+ views
Hint: In this question, we are to find the sum of the given series. For this, we need to apply the logarithmic series formula. By rewriting the given series into the form of required series, we can evaluate its value.
Formula Used:Exponential series:
${{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+...$
Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
$b=a-\dfrac{{{a}^{2}}}{2}+\dfrac{{{a}^{3}}}{3}-\dfrac{{{a}^{4}}}{4}+...(1)$
But we have a logarithmic series as
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...(2)$
On comparing (1) and (2), we get
$x=a$
Thus, on substituting this value into the logarithmic function, we get
$\begin{align}
& b=a-\dfrac{{{a}^{2}}}{2}+\dfrac{{{a}^{3}}}{3}-\dfrac{{{a}^{4}}}{4}+...\infty ={{\log }_{e}}(1+a) \\
& \Rightarrow b={{\log }_{e}}(1+a) \\
\end{align}$
Since we know that \[{{n}^{x}}=m\Leftrightarrow {{\log }_{n}}m=x\], then
$\begin{align}
& b={{\log }_{e}}(1+a) \\
& \Rightarrow 1+a={{e}^{b}} \\
\end{align}$
We have the exponential series as,
${{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+...$
So, we can write
$1+a={{e}^{b}}=1+\dfrac{b}{1!}+\dfrac{{{b}^{2}}}{2!}+\dfrac{{{b}^{3}}}{3!}+....\infty $
On simplifying,
$\begin{align}
& 1+a=1+\dfrac{b}{1!}+\dfrac{{{b}^{2}}}{2!}+\dfrac{{{b}^{3}}}{3!}+....\infty \\
& \Rightarrow a=b+\dfrac{{{b}^{2}}}{2!}+\dfrac{{{b}^{3}}}{3!}+....\infty \\
\end{align}$
Thus, the value of the series is $a$.
Option ‘C’ is correct
Note: In this question, the series is easy to compare, the only difference is the variable $x$. By using logarithmic functions and expansions, this type of sum would be evaluated. We have to apply logarithm properties if needed in the simplification. Here, on comparing we know that the series is same type but the variable is different i.e., in the given series $x=b$. So, by substituting this in the logarithmic function, the required sum will be obtained.
Formula Used:Exponential series:
${{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+...$
Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
$b=a-\dfrac{{{a}^{2}}}{2}+\dfrac{{{a}^{3}}}{3}-\dfrac{{{a}^{4}}}{4}+...(1)$
But we have a logarithmic series as
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...(2)$
On comparing (1) and (2), we get
$x=a$
Thus, on substituting this value into the logarithmic function, we get
$\begin{align}
& b=a-\dfrac{{{a}^{2}}}{2}+\dfrac{{{a}^{3}}}{3}-\dfrac{{{a}^{4}}}{4}+...\infty ={{\log }_{e}}(1+a) \\
& \Rightarrow b={{\log }_{e}}(1+a) \\
\end{align}$
Since we know that \[{{n}^{x}}=m\Leftrightarrow {{\log }_{n}}m=x\], then
$\begin{align}
& b={{\log }_{e}}(1+a) \\
& \Rightarrow 1+a={{e}^{b}} \\
\end{align}$
We have the exponential series as,
${{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+...$
So, we can write
$1+a={{e}^{b}}=1+\dfrac{b}{1!}+\dfrac{{{b}^{2}}}{2!}+\dfrac{{{b}^{3}}}{3!}+....\infty $
On simplifying,
$\begin{align}
& 1+a=1+\dfrac{b}{1!}+\dfrac{{{b}^{2}}}{2!}+\dfrac{{{b}^{3}}}{3!}+....\infty \\
& \Rightarrow a=b+\dfrac{{{b}^{2}}}{2!}+\dfrac{{{b}^{3}}}{3!}+....\infty \\
\end{align}$
Thus, the value of the series is $a$.
Option ‘C’ is correct
Note: In this question, the series is easy to compare, the only difference is the variable $x$. By using logarithmic functions and expansions, this type of sum would be evaluated. We have to apply logarithm properties if needed in the simplification. Here, on comparing we know that the series is same type but the variable is different i.e., in the given series $x=b$. So, by substituting this in the logarithmic function, the required sum will be obtained.
Recently Updated Pages
Geometry of Complex Numbers Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Trending doubts
Understanding Atomic Structure for Beginners

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Average and RMS Value in Electrical Circuits

Understanding Entropy Changes in Different Processes

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations And Combinations

Common Ion Effect: Concept, Applications, and Problem-Solving

Understanding Excess Pressure Inside a Liquid Drop

NCERT Solutions for Class 11 Maths Chapter 7 Permutations and Combinations

Understanding Elastic Collisions in Two Dimensions

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

