
If $b=a-\dfrac{{{a}^{2}}}{2}+\dfrac{{{a}^{3}}}{3}-\dfrac{{{a}^{4}}}{4}+...$ then $b+\dfrac{{{b}^{2}}}{2!}+\dfrac{{{b}^{3}}}{3!}+\dfrac{{{b}^{4}}}{4!}+...\infty $
A. ${{\log }_{e}}a$
B. ${{\log }_{e}}b$
C. $a$
D. ${{e}^{a}}$
Answer
163.8k+ views
Hint: In this question, we are to find the sum of the given series. For this, we need to apply the logarithmic series formula. By rewriting the given series into the form of required series, we can evaluate its value.
Formula Used:Exponential series:
${{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+...$
Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
$b=a-\dfrac{{{a}^{2}}}{2}+\dfrac{{{a}^{3}}}{3}-\dfrac{{{a}^{4}}}{4}+...(1)$
But we have a logarithmic series as
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...(2)$
On comparing (1) and (2), we get
$x=a$
Thus, on substituting this value into the logarithmic function, we get
$\begin{align}
& b=a-\dfrac{{{a}^{2}}}{2}+\dfrac{{{a}^{3}}}{3}-\dfrac{{{a}^{4}}}{4}+...\infty ={{\log }_{e}}(1+a) \\
& \Rightarrow b={{\log }_{e}}(1+a) \\
\end{align}$
Since we know that \[{{n}^{x}}=m\Leftrightarrow {{\log }_{n}}m=x\], then
$\begin{align}
& b={{\log }_{e}}(1+a) \\
& \Rightarrow 1+a={{e}^{b}} \\
\end{align}$
We have the exponential series as,
${{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+...$
So, we can write
$1+a={{e}^{b}}=1+\dfrac{b}{1!}+\dfrac{{{b}^{2}}}{2!}+\dfrac{{{b}^{3}}}{3!}+....\infty $
On simplifying,
$\begin{align}
& 1+a=1+\dfrac{b}{1!}+\dfrac{{{b}^{2}}}{2!}+\dfrac{{{b}^{3}}}{3!}+....\infty \\
& \Rightarrow a=b+\dfrac{{{b}^{2}}}{2!}+\dfrac{{{b}^{3}}}{3!}+....\infty \\
\end{align}$
Thus, the value of the series is $a$.
Option ‘C’ is correct
Note: In this question, the series is easy to compare, the only difference is the variable $x$. By using logarithmic functions and expansions, this type of sum would be evaluated. We have to apply logarithm properties if needed in the simplification. Here, on comparing we know that the series is same type but the variable is different i.e., in the given series $x=b$. So, by substituting this in the logarithmic function, the required sum will be obtained.
Formula Used:Exponential series:
${{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+...$
Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given series is
$b=a-\dfrac{{{a}^{2}}}{2}+\dfrac{{{a}^{3}}}{3}-\dfrac{{{a}^{4}}}{4}+...(1)$
But we have a logarithmic series as
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...(2)$
On comparing (1) and (2), we get
$x=a$
Thus, on substituting this value into the logarithmic function, we get
$\begin{align}
& b=a-\dfrac{{{a}^{2}}}{2}+\dfrac{{{a}^{3}}}{3}-\dfrac{{{a}^{4}}}{4}+...\infty ={{\log }_{e}}(1+a) \\
& \Rightarrow b={{\log }_{e}}(1+a) \\
\end{align}$
Since we know that \[{{n}^{x}}=m\Leftrightarrow {{\log }_{n}}m=x\], then
$\begin{align}
& b={{\log }_{e}}(1+a) \\
& \Rightarrow 1+a={{e}^{b}} \\
\end{align}$
We have the exponential series as,
${{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+...$
So, we can write
$1+a={{e}^{b}}=1+\dfrac{b}{1!}+\dfrac{{{b}^{2}}}{2!}+\dfrac{{{b}^{3}}}{3!}+....\infty $
On simplifying,
$\begin{align}
& 1+a=1+\dfrac{b}{1!}+\dfrac{{{b}^{2}}}{2!}+\dfrac{{{b}^{3}}}{3!}+....\infty \\
& \Rightarrow a=b+\dfrac{{{b}^{2}}}{2!}+\dfrac{{{b}^{3}}}{3!}+....\infty \\
\end{align}$
Thus, the value of the series is $a$.
Option ‘C’ is correct
Note: In this question, the series is easy to compare, the only difference is the variable $x$. By using logarithmic functions and expansions, this type of sum would be evaluated. We have to apply logarithm properties if needed in the simplification. Here, on comparing we know that the series is same type but the variable is different i.e., in the given series $x=b$. So, by substituting this in the logarithmic function, the required sum will be obtained.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets
