
If \[A,{\rm{ }}B,{\rm{ }}C\] are acute angles of a triangle such that \[{\rm{\tan}}A{\rm{ }} + {\rm{ \tan}}B{\rm{ }} + {\rm{ \tan}}C{\rm{ }} = {\rm{ \tan}}A{\rm{ \tan}}B{\rm{ \tan}}C\]. Then find the value of \[\cot A{\rm{ cot}}B{\rm{ cot}}C\].
A. \[ \le \dfrac{1}{{\surd 3}}{\rm{ }}\]
B. \[ \le \dfrac{1}{{2\surd 3}}{\rm{ }}\]
C. \[ \le \dfrac{1}{{3\surd 3}}{\rm{ }}\]
D. none of these
Answer
217.2k+ views
Hint: we will use the result between arithmetic mean (AM) and geometric mean (GM). Which says that the AM shall Always greater than or equals to the GM. Then we will substitute the given values in the results and equate them. Finally obtaining the required value.
Formula used:
\[\text{Arithmetic mean (AM)} \ge \text{geometric mean (GM)} \] that is the Arithmetic mean will always be greater than or equals to the geometric mean.
\[\left[ {\dfrac{{{\rm{ }}A + B + C}}{3}} \right]{\rm{ }} \ge \sqrt[3]{{A{\rm{ }}B{\rm{ }}C}}\]
Where \[\dfrac{{{\rm{ }}A + B + C}}{3}\] is the Arithmetic mean (AM) of three terms and \[\sqrt[3]{{A{\rm{ }}B{\rm{ }}C}}\] is the geometric mean (GM) of term \[A,{\rm{ }}B,{\rm{ }}C\]. where\[A,{\rm{ }}B,{\rm{ }}C\] can be the variable or the cons\tant as per question.
Complete step by step solution:
We are given that \[A,{\rm{ }}B,{\rm{ }}C\] are acute angles of a triangle such that \[{\rm{\tan}}A{\rm{ }} + {\rm{ \tan}}B{\rm{ }} + {\rm{ \tan}}C{\rm{ }} = {\rm{ \tan}}A{\rm{ \tan}}B{\rm{ \tan}}C\].
The result with which we will procced here is \[\left[ {\dfrac{{{\rm{ }}A + B + C}}{3}} \right]{\rm{ }} \ge \sqrt[3]{{A{\rm{ }}B{\rm{ }}C}}\]
Substitute the given values \[{\rm{\tan }}A,{\rm{ \tan }}B,{\rm{ \tan }}C\] in place of \[A,{\rm{ }}B,{\rm{ }}C\] in the result:
\[\left[ {\dfrac{{\tan A{\rm{ }} + {\rm{ \tan }}B{\rm{ }} + {\rm{ \tan }}C}}{3}} \right]{\rm{ }} \ge \sqrt[3]{{{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C}}{\rm{ }}\]
Rearrange the terms to evaluate the expression,
\[\left[ {\dfrac{{\tan A{\rm{ }} + {\rm{ \tan }}B{\rm{ }} + {\rm{ \tan }}C}}{3}} \right]{\rm{ }} \ge {\rm{ }}{\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right)^{\dfrac{1}{3}}}\]
Cross multiply and then cube the terms on the left-hand side and right-hand side then we get,
\[{\left[ {{\rm{\tan }}A{\rm{ }} + {\rm{ }}t{\rm{an }}B{\rm{ }} + {\rm{ \tan }}C} \right]^3}\; \ge {\rm{ }}27{\rm{ }}\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right)\]
Substitute the value of left-hand side as \[{\rm{\tan}}A{\rm{ }} + {\rm{ \tan}}B{\rm{ }} + {\rm{ \tan}}C{\rm{ }} = {\rm{ \tan}}A{\rm{ \tan}}B{\rm{ \tan}}C\]:
\[{\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right)^3}\; \ge {\rm{ }}27{\rm{ }}\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right){\rm{ }}\]
Canceling the common term and then square root on the left-hand side and right-hand side to get,
\[\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right)\; \ge {\rm{ }}3\sqrt 3 \]
Reciprocate the terms on the left-hand side and right-hand side to get the required solution.
\[\dfrac{1}{{\left( {\tan{\rm{ }}A{\rm{ }}\tan{\rm{ }}B{\rm{ }}\tan{\rm{ }}C} \right)}} \le \dfrac{1}{{3\surd 3}}{\rm{ }}\]
This implies that,
\[{\rm{cot }}A{\rm{ cot }}B{\rm{ cot }}C{\rm{ }} \le \dfrac{1}{{3\surd 3}}{\rm{ }}\]
Hence option C is correct.
Note: This problem can also be solved by cubing the given terms with the help of a formula. One should take great care while cube rooting terms on left-hand side and right-hand side also alertness is required while reciprocating the terms.
Formula used:
\[\text{Arithmetic mean (AM)} \ge \text{geometric mean (GM)} \] that is the Arithmetic mean will always be greater than or equals to the geometric mean.
\[\left[ {\dfrac{{{\rm{ }}A + B + C}}{3}} \right]{\rm{ }} \ge \sqrt[3]{{A{\rm{ }}B{\rm{ }}C}}\]
Where \[\dfrac{{{\rm{ }}A + B + C}}{3}\] is the Arithmetic mean (AM) of three terms and \[\sqrt[3]{{A{\rm{ }}B{\rm{ }}C}}\] is the geometric mean (GM) of term \[A,{\rm{ }}B,{\rm{ }}C\]. where\[A,{\rm{ }}B,{\rm{ }}C\] can be the variable or the cons\tant as per question.
Complete step by step solution:
We are given that \[A,{\rm{ }}B,{\rm{ }}C\] are acute angles of a triangle such that \[{\rm{\tan}}A{\rm{ }} + {\rm{ \tan}}B{\rm{ }} + {\rm{ \tan}}C{\rm{ }} = {\rm{ \tan}}A{\rm{ \tan}}B{\rm{ \tan}}C\].
The result with which we will procced here is \[\left[ {\dfrac{{{\rm{ }}A + B + C}}{3}} \right]{\rm{ }} \ge \sqrt[3]{{A{\rm{ }}B{\rm{ }}C}}\]
Substitute the given values \[{\rm{\tan }}A,{\rm{ \tan }}B,{\rm{ \tan }}C\] in place of \[A,{\rm{ }}B,{\rm{ }}C\] in the result:
\[\left[ {\dfrac{{\tan A{\rm{ }} + {\rm{ \tan }}B{\rm{ }} + {\rm{ \tan }}C}}{3}} \right]{\rm{ }} \ge \sqrt[3]{{{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C}}{\rm{ }}\]
Rearrange the terms to evaluate the expression,
\[\left[ {\dfrac{{\tan A{\rm{ }} + {\rm{ \tan }}B{\rm{ }} + {\rm{ \tan }}C}}{3}} \right]{\rm{ }} \ge {\rm{ }}{\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right)^{\dfrac{1}{3}}}\]
Cross multiply and then cube the terms on the left-hand side and right-hand side then we get,
\[{\left[ {{\rm{\tan }}A{\rm{ }} + {\rm{ }}t{\rm{an }}B{\rm{ }} + {\rm{ \tan }}C} \right]^3}\; \ge {\rm{ }}27{\rm{ }}\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right)\]
Substitute the value of left-hand side as \[{\rm{\tan}}A{\rm{ }} + {\rm{ \tan}}B{\rm{ }} + {\rm{ \tan}}C{\rm{ }} = {\rm{ \tan}}A{\rm{ \tan}}B{\rm{ \tan}}C\]:
\[{\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right)^3}\; \ge {\rm{ }}27{\rm{ }}\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right){\rm{ }}\]
Canceling the common term and then square root on the left-hand side and right-hand side to get,
\[\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right)\; \ge {\rm{ }}3\sqrt 3 \]
Reciprocate the terms on the left-hand side and right-hand side to get the required solution.
\[\dfrac{1}{{\left( {\tan{\rm{ }}A{\rm{ }}\tan{\rm{ }}B{\rm{ }}\tan{\rm{ }}C} \right)}} \le \dfrac{1}{{3\surd 3}}{\rm{ }}\]
This implies that,
\[{\rm{cot }}A{\rm{ cot }}B{\rm{ cot }}C{\rm{ }} \le \dfrac{1}{{3\surd 3}}{\rm{ }}\]
Hence option C is correct.
Note: This problem can also be solved by cubing the given terms with the help of a formula. One should take great care while cube rooting terms on left-hand side and right-hand side also alertness is required while reciprocating the terms.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

