
If \[A,{\rm{ }}B,{\rm{ }}C\] are acute angles of a triangle such that \[{\rm{\tan}}A{\rm{ }} + {\rm{ \tan}}B{\rm{ }} + {\rm{ \tan}}C{\rm{ }} = {\rm{ \tan}}A{\rm{ \tan}}B{\rm{ \tan}}C\]. Then find the value of \[\cot A{\rm{ cot}}B{\rm{ cot}}C\].
A. \[ \le \dfrac{1}{{\surd 3}}{\rm{ }}\]
B. \[ \le \dfrac{1}{{2\surd 3}}{\rm{ }}\]
C. \[ \le \dfrac{1}{{3\surd 3}}{\rm{ }}\]
D. none of these
Answer
232.8k+ views
Hint: we will use the result between arithmetic mean (AM) and geometric mean (GM). Which says that the AM shall Always greater than or equals to the GM. Then we will substitute the given values in the results and equate them. Finally obtaining the required value.
Formula used:
\[\text{Arithmetic mean (AM)} \ge \text{geometric mean (GM)} \] that is the Arithmetic mean will always be greater than or equals to the geometric mean.
\[\left[ {\dfrac{{{\rm{ }}A + B + C}}{3}} \right]{\rm{ }} \ge \sqrt[3]{{A{\rm{ }}B{\rm{ }}C}}\]
Where \[\dfrac{{{\rm{ }}A + B + C}}{3}\] is the Arithmetic mean (AM) of three terms and \[\sqrt[3]{{A{\rm{ }}B{\rm{ }}C}}\] is the geometric mean (GM) of term \[A,{\rm{ }}B,{\rm{ }}C\]. where\[A,{\rm{ }}B,{\rm{ }}C\] can be the variable or the cons\tant as per question.
Complete step by step solution:
We are given that \[A,{\rm{ }}B,{\rm{ }}C\] are acute angles of a triangle such that \[{\rm{\tan}}A{\rm{ }} + {\rm{ \tan}}B{\rm{ }} + {\rm{ \tan}}C{\rm{ }} = {\rm{ \tan}}A{\rm{ \tan}}B{\rm{ \tan}}C\].
The result with which we will procced here is \[\left[ {\dfrac{{{\rm{ }}A + B + C}}{3}} \right]{\rm{ }} \ge \sqrt[3]{{A{\rm{ }}B{\rm{ }}C}}\]
Substitute the given values \[{\rm{\tan }}A,{\rm{ \tan }}B,{\rm{ \tan }}C\] in place of \[A,{\rm{ }}B,{\rm{ }}C\] in the result:
\[\left[ {\dfrac{{\tan A{\rm{ }} + {\rm{ \tan }}B{\rm{ }} + {\rm{ \tan }}C}}{3}} \right]{\rm{ }} \ge \sqrt[3]{{{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C}}{\rm{ }}\]
Rearrange the terms to evaluate the expression,
\[\left[ {\dfrac{{\tan A{\rm{ }} + {\rm{ \tan }}B{\rm{ }} + {\rm{ \tan }}C}}{3}} \right]{\rm{ }} \ge {\rm{ }}{\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right)^{\dfrac{1}{3}}}\]
Cross multiply and then cube the terms on the left-hand side and right-hand side then we get,
\[{\left[ {{\rm{\tan }}A{\rm{ }} + {\rm{ }}t{\rm{an }}B{\rm{ }} + {\rm{ \tan }}C} \right]^3}\; \ge {\rm{ }}27{\rm{ }}\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right)\]
Substitute the value of left-hand side as \[{\rm{\tan}}A{\rm{ }} + {\rm{ \tan}}B{\rm{ }} + {\rm{ \tan}}C{\rm{ }} = {\rm{ \tan}}A{\rm{ \tan}}B{\rm{ \tan}}C\]:
\[{\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right)^3}\; \ge {\rm{ }}27{\rm{ }}\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right){\rm{ }}\]
Canceling the common term and then square root on the left-hand side and right-hand side to get,
\[\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right)\; \ge {\rm{ }}3\sqrt 3 \]
Reciprocate the terms on the left-hand side and right-hand side to get the required solution.
\[\dfrac{1}{{\left( {\tan{\rm{ }}A{\rm{ }}\tan{\rm{ }}B{\rm{ }}\tan{\rm{ }}C} \right)}} \le \dfrac{1}{{3\surd 3}}{\rm{ }}\]
This implies that,
\[{\rm{cot }}A{\rm{ cot }}B{\rm{ cot }}C{\rm{ }} \le \dfrac{1}{{3\surd 3}}{\rm{ }}\]
Hence option C is correct.
Note: This problem can also be solved by cubing the given terms with the help of a formula. One should take great care while cube rooting terms on left-hand side and right-hand side also alertness is required while reciprocating the terms.
Formula used:
\[\text{Arithmetic mean (AM)} \ge \text{geometric mean (GM)} \] that is the Arithmetic mean will always be greater than or equals to the geometric mean.
\[\left[ {\dfrac{{{\rm{ }}A + B + C}}{3}} \right]{\rm{ }} \ge \sqrt[3]{{A{\rm{ }}B{\rm{ }}C}}\]
Where \[\dfrac{{{\rm{ }}A + B + C}}{3}\] is the Arithmetic mean (AM) of three terms and \[\sqrt[3]{{A{\rm{ }}B{\rm{ }}C}}\] is the geometric mean (GM) of term \[A,{\rm{ }}B,{\rm{ }}C\]. where\[A,{\rm{ }}B,{\rm{ }}C\] can be the variable or the cons\tant as per question.
Complete step by step solution:
We are given that \[A,{\rm{ }}B,{\rm{ }}C\] are acute angles of a triangle such that \[{\rm{\tan}}A{\rm{ }} + {\rm{ \tan}}B{\rm{ }} + {\rm{ \tan}}C{\rm{ }} = {\rm{ \tan}}A{\rm{ \tan}}B{\rm{ \tan}}C\].
The result with which we will procced here is \[\left[ {\dfrac{{{\rm{ }}A + B + C}}{3}} \right]{\rm{ }} \ge \sqrt[3]{{A{\rm{ }}B{\rm{ }}C}}\]
Substitute the given values \[{\rm{\tan }}A,{\rm{ \tan }}B,{\rm{ \tan }}C\] in place of \[A,{\rm{ }}B,{\rm{ }}C\] in the result:
\[\left[ {\dfrac{{\tan A{\rm{ }} + {\rm{ \tan }}B{\rm{ }} + {\rm{ \tan }}C}}{3}} \right]{\rm{ }} \ge \sqrt[3]{{{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C}}{\rm{ }}\]
Rearrange the terms to evaluate the expression,
\[\left[ {\dfrac{{\tan A{\rm{ }} + {\rm{ \tan }}B{\rm{ }} + {\rm{ \tan }}C}}{3}} \right]{\rm{ }} \ge {\rm{ }}{\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right)^{\dfrac{1}{3}}}\]
Cross multiply and then cube the terms on the left-hand side and right-hand side then we get,
\[{\left[ {{\rm{\tan }}A{\rm{ }} + {\rm{ }}t{\rm{an }}B{\rm{ }} + {\rm{ \tan }}C} \right]^3}\; \ge {\rm{ }}27{\rm{ }}\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right)\]
Substitute the value of left-hand side as \[{\rm{\tan}}A{\rm{ }} + {\rm{ \tan}}B{\rm{ }} + {\rm{ \tan}}C{\rm{ }} = {\rm{ \tan}}A{\rm{ \tan}}B{\rm{ \tan}}C\]:
\[{\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right)^3}\; \ge {\rm{ }}27{\rm{ }}\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right){\rm{ }}\]
Canceling the common term and then square root on the left-hand side and right-hand side to get,
\[\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right)\; \ge {\rm{ }}3\sqrt 3 \]
Reciprocate the terms on the left-hand side and right-hand side to get the required solution.
\[\dfrac{1}{{\left( {\tan{\rm{ }}A{\rm{ }}\tan{\rm{ }}B{\rm{ }}\tan{\rm{ }}C} \right)}} \le \dfrac{1}{{3\surd 3}}{\rm{ }}\]
This implies that,
\[{\rm{cot }}A{\rm{ cot }}B{\rm{ cot }}C{\rm{ }} \le \dfrac{1}{{3\surd 3}}{\rm{ }}\]
Hence option C is correct.
Note: This problem can also be solved by cubing the given terms with the help of a formula. One should take great care while cube rooting terms on left-hand side and right-hand side also alertness is required while reciprocating the terms.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

