
If \[A,{\rm{ }}B,{\rm{ }}C\] are acute angles of a triangle such that \[{\rm{\tan}}A{\rm{ }} + {\rm{ \tan}}B{\rm{ }} + {\rm{ \tan}}C{\rm{ }} = {\rm{ \tan}}A{\rm{ \tan}}B{\rm{ \tan}}C\]. Then find the value of \[\cot A{\rm{ cot}}B{\rm{ cot}}C\].
A. \[ \le \dfrac{1}{{\surd 3}}{\rm{ }}\]
B. \[ \le \dfrac{1}{{2\surd 3}}{\rm{ }}\]
C. \[ \le \dfrac{1}{{3\surd 3}}{\rm{ }}\]
D. none of these
Answer
163.2k+ views
Hint: we will use the result between arithmetic mean (AM) and geometric mean (GM). Which says that the AM shall Always greater than or equals to the GM. Then we will substitute the given values in the results and equate them. Finally obtaining the required value.
Formula used:
\[\text{Arithmetic mean (AM)} \ge \text{geometric mean (GM)} \] that is the Arithmetic mean will always be greater than or equals to the geometric mean.
\[\left[ {\dfrac{{{\rm{ }}A + B + C}}{3}} \right]{\rm{ }} \ge \sqrt[3]{{A{\rm{ }}B{\rm{ }}C}}\]
Where \[\dfrac{{{\rm{ }}A + B + C}}{3}\] is the Arithmetic mean (AM) of three terms and \[\sqrt[3]{{A{\rm{ }}B{\rm{ }}C}}\] is the geometric mean (GM) of term \[A,{\rm{ }}B,{\rm{ }}C\]. where\[A,{\rm{ }}B,{\rm{ }}C\] can be the variable or the cons\tant as per question.
Complete step by step solution:
We are given that \[A,{\rm{ }}B,{\rm{ }}C\] are acute angles of a triangle such that \[{\rm{\tan}}A{\rm{ }} + {\rm{ \tan}}B{\rm{ }} + {\rm{ \tan}}C{\rm{ }} = {\rm{ \tan}}A{\rm{ \tan}}B{\rm{ \tan}}C\].
The result with which we will procced here is \[\left[ {\dfrac{{{\rm{ }}A + B + C}}{3}} \right]{\rm{ }} \ge \sqrt[3]{{A{\rm{ }}B{\rm{ }}C}}\]
Substitute the given values \[{\rm{\tan }}A,{\rm{ \tan }}B,{\rm{ \tan }}C\] in place of \[A,{\rm{ }}B,{\rm{ }}C\] in the result:
\[\left[ {\dfrac{{\tan A{\rm{ }} + {\rm{ \tan }}B{\rm{ }} + {\rm{ \tan }}C}}{3}} \right]{\rm{ }} \ge \sqrt[3]{{{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C}}{\rm{ }}\]
Rearrange the terms to evaluate the expression,
\[\left[ {\dfrac{{\tan A{\rm{ }} + {\rm{ \tan }}B{\rm{ }} + {\rm{ \tan }}C}}{3}} \right]{\rm{ }} \ge {\rm{ }}{\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right)^{\dfrac{1}{3}}}\]
Cross multiply and then cube the terms on the left-hand side and right-hand side then we get,
\[{\left[ {{\rm{\tan }}A{\rm{ }} + {\rm{ }}t{\rm{an }}B{\rm{ }} + {\rm{ \tan }}C} \right]^3}\; \ge {\rm{ }}27{\rm{ }}\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right)\]
Substitute the value of left-hand side as \[{\rm{\tan}}A{\rm{ }} + {\rm{ \tan}}B{\rm{ }} + {\rm{ \tan}}C{\rm{ }} = {\rm{ \tan}}A{\rm{ \tan}}B{\rm{ \tan}}C\]:
\[{\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right)^3}\; \ge {\rm{ }}27{\rm{ }}\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right){\rm{ }}\]
Canceling the common term and then square root on the left-hand side and right-hand side to get,
\[\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right)\; \ge {\rm{ }}3\sqrt 3 \]
Reciprocate the terms on the left-hand side and right-hand side to get the required solution.
\[\dfrac{1}{{\left( {\tan{\rm{ }}A{\rm{ }}\tan{\rm{ }}B{\rm{ }}\tan{\rm{ }}C} \right)}} \le \dfrac{1}{{3\surd 3}}{\rm{ }}\]
This implies that,
\[{\rm{cot }}A{\rm{ cot }}B{\rm{ cot }}C{\rm{ }} \le \dfrac{1}{{3\surd 3}}{\rm{ }}\]
Hence option C is correct.
Note: This problem can also be solved by cubing the given terms with the help of a formula. One should take great care while cube rooting terms on left-hand side and right-hand side also alertness is required while reciprocating the terms.
Formula used:
\[\text{Arithmetic mean (AM)} \ge \text{geometric mean (GM)} \] that is the Arithmetic mean will always be greater than or equals to the geometric mean.
\[\left[ {\dfrac{{{\rm{ }}A + B + C}}{3}} \right]{\rm{ }} \ge \sqrt[3]{{A{\rm{ }}B{\rm{ }}C}}\]
Where \[\dfrac{{{\rm{ }}A + B + C}}{3}\] is the Arithmetic mean (AM) of three terms and \[\sqrt[3]{{A{\rm{ }}B{\rm{ }}C}}\] is the geometric mean (GM) of term \[A,{\rm{ }}B,{\rm{ }}C\]. where\[A,{\rm{ }}B,{\rm{ }}C\] can be the variable or the cons\tant as per question.
Complete step by step solution:
We are given that \[A,{\rm{ }}B,{\rm{ }}C\] are acute angles of a triangle such that \[{\rm{\tan}}A{\rm{ }} + {\rm{ \tan}}B{\rm{ }} + {\rm{ \tan}}C{\rm{ }} = {\rm{ \tan}}A{\rm{ \tan}}B{\rm{ \tan}}C\].
The result with which we will procced here is \[\left[ {\dfrac{{{\rm{ }}A + B + C}}{3}} \right]{\rm{ }} \ge \sqrt[3]{{A{\rm{ }}B{\rm{ }}C}}\]
Substitute the given values \[{\rm{\tan }}A,{\rm{ \tan }}B,{\rm{ \tan }}C\] in place of \[A,{\rm{ }}B,{\rm{ }}C\] in the result:
\[\left[ {\dfrac{{\tan A{\rm{ }} + {\rm{ \tan }}B{\rm{ }} + {\rm{ \tan }}C}}{3}} \right]{\rm{ }} \ge \sqrt[3]{{{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C}}{\rm{ }}\]
Rearrange the terms to evaluate the expression,
\[\left[ {\dfrac{{\tan A{\rm{ }} + {\rm{ \tan }}B{\rm{ }} + {\rm{ \tan }}C}}{3}} \right]{\rm{ }} \ge {\rm{ }}{\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right)^{\dfrac{1}{3}}}\]
Cross multiply and then cube the terms on the left-hand side and right-hand side then we get,
\[{\left[ {{\rm{\tan }}A{\rm{ }} + {\rm{ }}t{\rm{an }}B{\rm{ }} + {\rm{ \tan }}C} \right]^3}\; \ge {\rm{ }}27{\rm{ }}\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right)\]
Substitute the value of left-hand side as \[{\rm{\tan}}A{\rm{ }} + {\rm{ \tan}}B{\rm{ }} + {\rm{ \tan}}C{\rm{ }} = {\rm{ \tan}}A{\rm{ \tan}}B{\rm{ \tan}}C\]:
\[{\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right)^3}\; \ge {\rm{ }}27{\rm{ }}\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right){\rm{ }}\]
Canceling the common term and then square root on the left-hand side and right-hand side to get,
\[\left( {{\rm{\tan }}A{\rm{ \tan }}B{\rm{ \tan }}C} \right)\; \ge {\rm{ }}3\sqrt 3 \]
Reciprocate the terms on the left-hand side and right-hand side to get the required solution.
\[\dfrac{1}{{\left( {\tan{\rm{ }}A{\rm{ }}\tan{\rm{ }}B{\rm{ }}\tan{\rm{ }}C} \right)}} \le \dfrac{1}{{3\surd 3}}{\rm{ }}\]
This implies that,
\[{\rm{cot }}A{\rm{ cot }}B{\rm{ cot }}C{\rm{ }} \le \dfrac{1}{{3\surd 3}}{\rm{ }}\]
Hence option C is correct.
Note: This problem can also be solved by cubing the given terms with the help of a formula. One should take great care while cube rooting terms on left-hand side and right-hand side also alertness is required while reciprocating the terms.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025 Notes
