
If an electron revolves in the path of a circle of radius \[0.5 \times {10^{ - 10}}m\] at a frequency of \[5 \times {10^{15}}\] cycles/s, the electric current in the circle is (charge of an electron = \[1.6 \times {10^{ - 19}}\] )
A. \[0.4\,mA\]
B. \[0.8\,mA\]
C. \[1.2\,mA\]
D. \[1.6\,mA\]
Answer
216.6k+ views
Hint:The current is calculated by dividing charge by time where time is defined as the distance /speed. The magnetic induction at the centre of the circular path is given by the formula μ0times the current divided by twice the radius.
Formula Used:
Current, $I = \dfrac{q}{t}$
where $q$ is the charge flowing in $t$ period of time.
Total charge, $q = ne$
where $n$ is the number of electrons and $e$ is the charge on a single electron.
And $\text{time} = \dfrac{1}{\text{frequency}}$
Complete step by step solution:
Given: Radius of the circular path, $r = 0.5 \times {10^{ - 10}}m$
Frequency of the electron, $\nu = 5 \times {10^{15}}\,cycles/s$
Since, $\text{time} = \dfrac{1}{\text{frequency}}$ therefore,
$t = \dfrac{1}{{5 \times {{10}^{15}}}}$
Also, the number of electrons given is, $n = 1$.
Electrons can move freely inside the confines of the body when the nucleus is only lightly holding them. Because electrons are negatively charged particles, they cause a number of charges to flow when they move.
We know that, $I = \dfrac{q}{t}$ and $q = ne$
Therefore, we get, $I = \dfrac{{ne}}{t}$
Putting the known values in the above expression, we get,
$I = \dfrac{{1 \times \left( {1.6 \times {{10}^{ - 19}}} \right)}}{{\left( {\dfrac{1}{{5 \times {{10}^{15}}}}} \right)}} \\ $
Simplifying this, we get,
$I = \left( {5 \times {{10}^{15}}} \right) \times \left( {1.6 \times {{10}^{ - 19}}} \right) \\ $
Thus, $I = 8 \times {10^{ - 4}}A$
That is, $I = 0.8\,mA$
Hence, option B is the correct answer.
Note: The magnetic induction produced at the centre of the circular path is due to charge carrying particles i.e., electrons. The electron revolves in a circular path. So, the distance covered is equal to the circumference of the circle.
Formula Used:
Current, $I = \dfrac{q}{t}$
where $q$ is the charge flowing in $t$ period of time.
Total charge, $q = ne$
where $n$ is the number of electrons and $e$ is the charge on a single electron.
And $\text{time} = \dfrac{1}{\text{frequency}}$
Complete step by step solution:
Given: Radius of the circular path, $r = 0.5 \times {10^{ - 10}}m$
Frequency of the electron, $\nu = 5 \times {10^{15}}\,cycles/s$
Since, $\text{time} = \dfrac{1}{\text{frequency}}$ therefore,
$t = \dfrac{1}{{5 \times {{10}^{15}}}}$
Also, the number of electrons given is, $n = 1$.
Electrons can move freely inside the confines of the body when the nucleus is only lightly holding them. Because electrons are negatively charged particles, they cause a number of charges to flow when they move.
We know that, $I = \dfrac{q}{t}$ and $q = ne$
Therefore, we get, $I = \dfrac{{ne}}{t}$
Putting the known values in the above expression, we get,
$I = \dfrac{{1 \times \left( {1.6 \times {{10}^{ - 19}}} \right)}}{{\left( {\dfrac{1}{{5 \times {{10}^{15}}}}} \right)}} \\ $
Simplifying this, we get,
$I = \left( {5 \times {{10}^{15}}} \right) \times \left( {1.6 \times {{10}^{ - 19}}} \right) \\ $
Thus, $I = 8 \times {10^{ - 4}}A$
That is, $I = 0.8\,mA$
Hence, option B is the correct answer.
Note: The magnetic induction produced at the centre of the circular path is due to charge carrying particles i.e., electrons. The electron revolves in a circular path. So, the distance covered is equal to the circumference of the circle.
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

