
If $\alpha ,\beta ,\gamma$ are the angles of the triangle then ${{\sin }^{2}}\alpha +{{\sin }^{2}}\beta +{{\sin }^{2}}\gamma -2\cos \alpha \cos \beta \cos \gamma$ is
A. $2$
B. $-1$
C. $-2$
D. $0$
Answer
216.6k+ views
Hint: To find the value of the equation ${{\sin }^{2}}\alpha +{{\sin }^{2}}\beta +{{\sin }^{2}}\gamma -2\cos \alpha \cos \beta \cos \gamma$we will use angle sum property and form an equation. Then using that equation, we will form another equation in terms of two angles. After taking cosine on both the sides we will solve it and make the equation like ${{\sin }^{2}}\alpha +{{\sin }^{2}}\beta +{{\sin }^{2}}\gamma -2\cos \alpha \cos \beta \cos \gamma$ and derive its value.
Formula used:
The trigonometric formulas are:
$\begin{align}
& \cos (A+B)=\cos A\cos B-\sin A\sin B \\
& {{\cos }^{2}}A=1-{{\sin }^{2}}A
\end{align}$The expansion formula is:
${{(a-b)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$
Complete step-by-step solution:
We are given a triangle having angles $\alpha ,\beta ,\gamma$ and we have to find the value of ${{\sin }^{2}}\alpha +{{\sin }^{2}}\beta +{{\sin }^{2}}\gamma -2\cos \alpha \cos \beta \cos \gamma$.
Using angle sum property of triangle according to which the sum of all the angles in a triangle is $\pi$, we will form an equation.
$\alpha +\beta +\gamma =\pi$
$\alpha +\beta =\pi -\gamma$
Taking cosine on both of the sides,
$\cos \left( \alpha +\beta \right)=\cos \left( \pi -\gamma \right)$
Using formula of $\cos (A+B)=\cos A\cos B-\sin A\sin B$.
$\begin{align}
& \cos \alpha \cos \beta -\sin \alpha \sin \beta =-\cos \gamma \\
& \cos \alpha \cos \beta +\cos \gamma =\sin \alpha \sin \beta
\end{align}$Squaring on both sides,
${{\left( \cos \alpha \cos \beta +\cos \gamma \right)}^{2}}={{\left( \sin \alpha \sin \beta \right)}^{2}}$
Using formula of expansion, we will open the brackets,
$\begin{align}
& {{\cos }^{2}}\alpha {{\cos }^{2}}\beta +\cos {{\gamma }^{2}}+2\cos \alpha \cos \beta \cos \gamma ={{\sin }^{2}}\alpha {{\sin }^{2}}\beta \\
& (1-{{\sin }^{2}}\alpha )(1-{{\sin }^{2}}\beta )+(1-{{\sin }^{2}}\gamma )+2\cos \alpha \cos \beta \cos \gamma ={{\sin }^{2}}\alpha {{\sin }^{2}}\beta
\end{align}$$1-{{\sin }^{2}}\beta -{{\sin }^{2}}\alpha +{{\sin }^{2}}\alpha {{\sin }^{2}}\beta +1-{{\sin }^{2}}\gamma +2\cos \alpha \cos \beta \cos \gamma ={{\sin }^{2}}\alpha {{\sin }^{2}}\beta$
\[\begin{align}
& 2-({{\sin }^{2}}\beta +{{\sin }^{2}}\alpha +{{\sin }^{2}}\gamma )+2\cos \alpha \cos \beta \cos \gamma ={{\sin }^{2}}\alpha {{\sin }^{2}}\beta -{{\sin }^{2}}\alpha {{\sin }^{2}}\beta \\
& {{\sin }^{2}}\beta +{{\sin }^{2}}\alpha +{{\sin }^{2}}\gamma -2\cos \alpha \cos \beta \cos \gamma =2
\end{align}\]
The value of ${{\sin }^{2}}\alpha +{{\sin }^{2}}\beta +{{\sin }^{2}}\gamma -2\cos \alpha \cos \beta \cos \gamma$ is $2$ when$\alpha ,\beta ,\gamma$ are the angles of the triangle. Hence the correct option is (A).
Note:
We could have also solved this question by randomly taking the values of the angles of the triangle $\alpha ,\beta ,\gamma$.
In first case let us assume the angles be $\alpha ={{30}^{0}},\beta ={{60}^{0}}$ then third angle will be $\gamma ={{90}^{0}}$. We will now substitute the values in the given equation and find the value.
$\begin{align}
& ={{\sin }^{2}}30+{{\sin }^{2}}60+{{\sin }^{2}}90-2\cos 30\cos 60\cos 90 \\
& =\frac{1}{4}+\frac{3}{4}+1-2\times \frac{\sqrt{3}}{2}\times \frac{1}{2}\times 0 \\
& =2 \\
\end{align}$
Again we will assume another values of the angles. Let us take $\alpha ={{45}^{0}},\beta ={{45}^{0}}$ then third angle will be $\gamma ={{90}^{0}}$. Again we will substitute the values of the angles in the given equation.
\[\begin{align}
& ={{\sin }^{2}}45+{{\sin }^{2}}45+{{\sin }^{2}}90-2\cos 45\cos 45\cos 90 \\
& =\frac{1}{2}+\frac{1}{2}+1-2\times \frac{1}{\sqrt{2}}\times \frac{1}{\sqrt{2}}\times 0 \\
& =2 \\
\end{align}\]
We can see in both the cases the value of the equation is same and exactly what we derived from another method. Hence this will be the correct answer.
Formula used:
The trigonometric formulas are:
$\begin{align}
& \cos (A+B)=\cos A\cos B-\sin A\sin B \\
& {{\cos }^{2}}A=1-{{\sin }^{2}}A
\end{align}$The expansion formula is:
${{(a-b)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$
Complete step-by-step solution:
We are given a triangle having angles $\alpha ,\beta ,\gamma$ and we have to find the value of ${{\sin }^{2}}\alpha +{{\sin }^{2}}\beta +{{\sin }^{2}}\gamma -2\cos \alpha \cos \beta \cos \gamma$.
Using angle sum property of triangle according to which the sum of all the angles in a triangle is $\pi$, we will form an equation.
$\alpha +\beta +\gamma =\pi$
$\alpha +\beta =\pi -\gamma$
Taking cosine on both of the sides,
$\cos \left( \alpha +\beta \right)=\cos \left( \pi -\gamma \right)$
Using formula of $\cos (A+B)=\cos A\cos B-\sin A\sin B$.
$\begin{align}
& \cos \alpha \cos \beta -\sin \alpha \sin \beta =-\cos \gamma \\
& \cos \alpha \cos \beta +\cos \gamma =\sin \alpha \sin \beta
\end{align}$Squaring on both sides,
${{\left( \cos \alpha \cos \beta +\cos \gamma \right)}^{2}}={{\left( \sin \alpha \sin \beta \right)}^{2}}$
Using formula of expansion, we will open the brackets,
$\begin{align}
& {{\cos }^{2}}\alpha {{\cos }^{2}}\beta +\cos {{\gamma }^{2}}+2\cos \alpha \cos \beta \cos \gamma ={{\sin }^{2}}\alpha {{\sin }^{2}}\beta \\
& (1-{{\sin }^{2}}\alpha )(1-{{\sin }^{2}}\beta )+(1-{{\sin }^{2}}\gamma )+2\cos \alpha \cos \beta \cos \gamma ={{\sin }^{2}}\alpha {{\sin }^{2}}\beta
\end{align}$$1-{{\sin }^{2}}\beta -{{\sin }^{2}}\alpha +{{\sin }^{2}}\alpha {{\sin }^{2}}\beta +1-{{\sin }^{2}}\gamma +2\cos \alpha \cos \beta \cos \gamma ={{\sin }^{2}}\alpha {{\sin }^{2}}\beta$
\[\begin{align}
& 2-({{\sin }^{2}}\beta +{{\sin }^{2}}\alpha +{{\sin }^{2}}\gamma )+2\cos \alpha \cos \beta \cos \gamma ={{\sin }^{2}}\alpha {{\sin }^{2}}\beta -{{\sin }^{2}}\alpha {{\sin }^{2}}\beta \\
& {{\sin }^{2}}\beta +{{\sin }^{2}}\alpha +{{\sin }^{2}}\gamma -2\cos \alpha \cos \beta \cos \gamma =2
\end{align}\]
The value of ${{\sin }^{2}}\alpha +{{\sin }^{2}}\beta +{{\sin }^{2}}\gamma -2\cos \alpha \cos \beta \cos \gamma$ is $2$ when$\alpha ,\beta ,\gamma$ are the angles of the triangle. Hence the correct option is (A).
Note:
We could have also solved this question by randomly taking the values of the angles of the triangle $\alpha ,\beta ,\gamma$.
In first case let us assume the angles be $\alpha ={{30}^{0}},\beta ={{60}^{0}}$ then third angle will be $\gamma ={{90}^{0}}$. We will now substitute the values in the given equation and find the value.
$\begin{align}
& ={{\sin }^{2}}30+{{\sin }^{2}}60+{{\sin }^{2}}90-2\cos 30\cos 60\cos 90 \\
& =\frac{1}{4}+\frac{3}{4}+1-2\times \frac{\sqrt{3}}{2}\times \frac{1}{2}\times 0 \\
& =2 \\
\end{align}$
Again we will assume another values of the angles. Let us take $\alpha ={{45}^{0}},\beta ={{45}^{0}}$ then third angle will be $\gamma ={{90}^{0}}$. Again we will substitute the values of the angles in the given equation.
\[\begin{align}
& ={{\sin }^{2}}45+{{\sin }^{2}}45+{{\sin }^{2}}90-2\cos 45\cos 45\cos 90 \\
& =\frac{1}{2}+\frac{1}{2}+1-2\times \frac{1}{\sqrt{2}}\times \frac{1}{\sqrt{2}}\times 0 \\
& =2 \\
\end{align}\]
We can see in both the cases the value of the equation is same and exactly what we derived from another method. Hence this will be the correct answer.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

