
If $\alpha $ and $\beta $ are different complex number with $\left| \alpha \right| = 1$, then what is $\left| {\dfrac{{\alpha - \beta }}{{1 - \alpha \overline \beta }}} \right|$ equal to?
A. $\left| \beta \right|$
B. 2
C. 1
D. 0
Answer
137.7k+ views
Hint: Here we will use the conjugate of the given complex numbers to solve.
Complete step-by-step answer:
Multiplying by $\overline \alpha $ on numerator and denominator, we get
$\left| {\dfrac{{(\alpha - \beta )\overline \alpha }}{{(1 - \alpha \overline \beta )\overline \alpha }}} \right| = \left| {\dfrac{{(\alpha - \beta )\overline \alpha }}{{\overline \alpha - \alpha \overline \alpha \overline \beta }}} \right|$
We know that
$
z.\overline z = {\left| z \right|^2} \\
\overline \alpha \alpha = {\left| \alpha \right|^2} = 1 \\
\left| {\dfrac{{(\alpha - \beta )\overline \alpha }}{{(\overline \alpha - \overline \beta )}}} \right| = \left| {\dfrac{{(\alpha - \beta )}}{{(\overline \alpha - \overline \beta )}}} \right|\left| {\overline \alpha } \right| \\
$
As we know $\left| z \right| = \left| {\overline z } \right|$
Therefore $\left| {\alpha - \beta } \right| = \left| {\overline {\alpha - \beta } } \right|$
So it gets cancel out,
$\left| {\overline \alpha } \right| = \left| \alpha \right| = 1$
Note: For modulus type questions in complex numbers, we have to simplify using conjugate and using property of modulus.
Complete step-by-step answer:
Multiplying by $\overline \alpha $ on numerator and denominator, we get
$\left| {\dfrac{{(\alpha - \beta )\overline \alpha }}{{(1 - \alpha \overline \beta )\overline \alpha }}} \right| = \left| {\dfrac{{(\alpha - \beta )\overline \alpha }}{{\overline \alpha - \alpha \overline \alpha \overline \beta }}} \right|$
We know that
$
z.\overline z = {\left| z \right|^2} \\
\overline \alpha \alpha = {\left| \alpha \right|^2} = 1 \\
\left| {\dfrac{{(\alpha - \beta )\overline \alpha }}{{(\overline \alpha - \overline \beta )}}} \right| = \left| {\dfrac{{(\alpha - \beta )}}{{(\overline \alpha - \overline \beta )}}} \right|\left| {\overline \alpha } \right| \\
$
As we know $\left| z \right| = \left| {\overline z } \right|$
Therefore $\left| {\alpha - \beta } \right| = \left| {\overline {\alpha - \beta } } \right|$
So it gets cancel out,
$\left| {\overline \alpha } \right| = \left| \alpha \right| = 1$
Note: For modulus type questions in complex numbers, we have to simplify using conjugate and using property of modulus.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Physics Average Value and RMS Value JEE Main 2025

Collision - Important Concepts and Tips for JEE

Other Pages
Formula for Mean Deviation For Ungrouped Data

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
